(1)在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。
(2)在Redis中,保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等。
实现高可用的技术主要包括持久化、主从复制、哨兵和 Cluster集群。
持久化是最简单的高可用方法.
主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。
(1)主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。
(2)主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。
(3)缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
(1)在主从复制的基础上,哨兵实现了自动化的故障恢复。
(2)缺陷:写操作无法负载均衡;存储能力受到单机的限制。
通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。
(1)Redis是内存数据库,数据存储在内存中,避免服务器断电等原因导致Redis进程异常退出后数据的永久丢失,需定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘,当下次Redis重启时,利用持久化文件实现数据恢复。
(2)为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。
原理是将 Reids在内存中的数据库记录定时保存到磁盘上
原理是将 Reids 的操作日志以追加的方式写入文件,类似于MySQL的binlog。
由AOF持久化的实时性更好,进程意外退出时丢失的数据更少,因此AOF是目前主流的持久化方式,不过RDB持久化仍然有其用武之地。
RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),用二进制压缩存储,保存的文件后缀是rdb;当Redis重新启动时,可以读取快照文件恢复数据。
RDB持久化的触发分为手动触发和自动触发两种。
(1)手动触发
bgsave命令执行过程中,只有fork子进程时会阻塞服务器,而对于save命令,整个过程都会阻塞服务器,因此save已基本被废弃,线上环境要杜绝save的使用。
(2)自动触发
vim /etc/redis/6379.conf
--219行--以下三个save条件满足任意一个时,都会引起bgsave的调用
save 900 1 :当时间到900秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时,如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化,则执行bgsave
--254行--指定RDB文件名
dbfilename dump.rdb
--264行--指定RDB文件和AOF文件所在目录
dir /var/lib/redis/6379
--242行--是否开启RDB文件压缩
rdbcompression yes
(3)其他自动触发机制
除了save m n 以外,还有一些其他情况会触发bgsave:
● 在 主 从 复 制 场 景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点。
●执行shutdown命令时,自动执行rdb持久化。
(1)Redis父进程首先判断:当前是否在执行save,或bgsave/bgrewriteaof的子进程,如果在执行则bgsave命令直接返回。 bgsave/bgrewriteaof的子进程不能同时执行,主要是基于性能方面的考虑:两个并发的子进程同时执行大量的磁盘写操作,可能引起严重的性能问题。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,Redis不能执行来自客户端的任何命令
(3)父进程fork后,bgsave命令返回”Background saving started”信息并不再阻塞父进程,并可以响应其他命令
(4)子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换
(5)子进程发送信号给父进程表示完成,父进程更新统计信息
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NXWI3A8A-1690370252196)(C:\Users\zhao\AppData\Roaming\Typora\typora-user-images\image-20230726095429955.png)]
RDB文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。但由于AOF的优先级更高,因此当AOF开启时,Redis会优先载入 AOF文件来恢复数据;只有当AOF关闭时,才会在Redis服务器启动时检测RDB文件,并自动载入。服务器载入RDB文件期间处于阻塞状态,直到载入完成为止。
Redis载入RDB文件时,会对RDB文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。
(1)缺点
(2)优点
RDB持久化是将进程数据写入文件,而AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录; 当Redis重启时再次执行AOF文件中的命令来恢复数据。
与RDB相比,AOF的实时性更好,因此已成为主流的持久化方案。
Redis服务器默认开启RDB,关闭AOF;要开启AOF,需要在配置文件中配置:
vim /etc/redis/6379.conf
--700行--修改,开启AOF
appendonly yes
--704行--指定AOF文件名称
appendfilename "appendonly.aof"
--796行--是否忽略最后一条可能存在问题的指令
aof-load-truncated yes
/etc/init.d/redis_6379 restart
3.4.3AOF的执行流程
由于需要记录Redis的每条写命令,因此AOF不需要触发.
AOF的执行流程包括:
(1)命令追加(append)
(2)文件写入(write)和文件同步(sync)
vim /etc/redis/6379.conf
–729行–
●appendfsync always: 命令写入aof_buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。
●appendfsync no: 命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步;同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。
●appendfsync everysec: 命令写入aof_buf后调用系统write操作,write完成后线程返回;fsync同步文件操作由专门的线程每秒调用一次。everysec是前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置。
(3)文件重写(rewrite)
●过期的数据不再写入文件
●无效的命令不再写入文件:如有些数据被重复设值(set mykey v1, set mykey v2)、有些数据被删除了(set myset v1, del myset)等。
●多条命令可以合并为一个:如sadd myset v1, sadd myset v2, sadd myset v3可以合并为sadd myset v1 v2 v3。
通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度。
●手动触发:直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞。
●自动触发:通过设置auto-aof-rewrite-min-size选项和auto-aof-rewrite-percentage选项来自动执行BGREWRITEAOF。 只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作。
vim /etc/redis/6379.conf
–729–
●auto-aof-rewrite-percentage 100 :当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作
●auto-aof-rewrite-min-size 64mb :当前AOF文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF
关于文件重写的流程,有两点需要特别注意:(1)重写由父进程fork子进程进行;(2)重写期间Redis执行的写命令,需要追加到新的AOF文件中,为此Redis引入了aof_rewrite_buf缓存。
(1)Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在 bgsave命令则等bgsave执行完成后再执行。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。
(3.1)父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”信息并不再阻塞父进程, 并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。
(3.2)由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_rewrite_buf)保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。
(4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。
(5.1)子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看。
(5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。
(5.3)使用新的AOF文件替换老文件,完成AOF重写。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PbCjv6kH-1690370252197)(C:\Users\zhao\AppData\Roaming\Typora\typora-user-images\image-20230726115030489.png)]
(1)当AOF开启时,Redis启动时会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会载入RDB文件恢复数据。
(2)当AOF开启,但AOF文件不存在时,即使RDB文件存在也不会加载。
(3)Redis载入AOF文件时,会对AOF文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。但如果是AOF文件结尾不完整(机器突然宕机等容易导致文件尾部不完整),且aof-load-truncated参数开启,则日志中会输出警告,Redis忽略掉AOF文件的尾部,启动成功。aof-load-truncated参数默认是开启的。
(1)缺点
(2)优点
127.0.0.1:6379> info memory
相当于如有32个内存,使用了24个,则剩下的8个就是内存碎片率
(1)内存碎片率稍大于1是合理的,这个值表示内存碎片率比较低,也说明 Redis 没有发生内存交换。
(2)内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150%,其中50%是内存碎片率。需要在redis-cli工具上输入shutdown save 命令,让 Redis 数据库执行保存操作并关闭 Redis 服务,再重启服务器。
(3)内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。需要增加可用物理内存或减少 Redis 内存占用。
(1)redis存储数据的时候,操作系统申请的内存空间可能会大于实际需要的内存空间
(2)频繁修改redis中数据也会产生内存碎片
redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换。
(1)针对缓存数据大小选择安装 Redis 实例
(2)尽可能的使用Hash数据结构存储
(3)设置key的过期时间
内存清理策略,保证合理分配redis有限的内存资源。
当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除。
配置文件中修改 maxmemory-policy 属性值:
vim /etc/redis/6379.conf
--598--
maxmemory-policy noenviction
●volatile-lru:使用LRU算法从已设置过期时间的数据集合中淘汰数据(移除最近最少使用的key,针对设置了TTL的key)
●volatile-ttl:从已设置过期时间的数据集合中挑选即将过期的数据淘汰(移除最近过期的key)
●volatile-random:从已设置过期时间的数据集合中随机挑选数据淘汰(在设置了TTL的key里随机移除)
●allkeys-lru:使用LRU算法从所有数据集合中淘汰数据(移除最少使用的key,针对所有的key)
●allkeys-random:从数据集合中任意选择数据淘汰(随机移除key)
●noenviction:禁止淘汰数据(不删除直到写满时报错)
(1)RDB:周期性的把内存中的数据保存在磁盘中
(2)AOF: 从Redis的操作日志记录中将执行的过程同步到磁盘中
(1)RDB
写入磁盘中保存的方式: 内存中
写入磁盘中的保存的数据对象:结果数据
内存写入磁盘后,会进行压缩,来减小*rdb的磁盘占用空间量
(2)AOF
内存写入到append追加到缓冲区再调用CPU资源来写入到磁盘中
操作日志记录中的执行语句追加到缓冲调用CPU写入磁盘
内存—缓冲—磁盘,写入后,会周期性的进行重写,调过一些"无效操作”保存
(1)RDB分为
特殊触发:当手动关闭Redis时,会进行RDB方式的持久化
/etc/init.d/redis 6379 stop restart
shutdown 关闭时,kill 不会触发
(2)AOF
(1)因为redis默认是将数据保存在内存中,所以若redis启动、关闭时内存中的数据会丢失
(2)在redis每次启动时,都会读取持久化文件,来会发数据到内存中,以保证reids数据的完整性
(3)RDB和AOF优先级aof>RDB
式的持久化