MySQL索引的设计原则

为了使索引的使用效率更高,在创建索引时,必须考虑在哪些字段上创建索引和创建什么类型的索引。索引设计不合理或者缺少索引都会对数据库和应用程序的性能造成障碍。高效的索引对于获得良好的性能非常重要。设计索引时,应该考虑相应准则。

哪些情况适合创建索引?

  1. 字段的数值有唯一性的限制

索引本身可以起到约束的作用,比如唯一索引,主键索引都是可以起到唯一性约束的,因此在我们的数据表中如果某个字段是唯一性的,就可以直接创建唯一性索引,或者主键索引。这样可以更快速地通过该索引来确定某条记录。

业务上具有唯一特性的字段,即使是组合字段,也必须建成唯一索引。(来源:Alibaba)

说明:不要以为唯一索引影响了 insert 速度,这个速度损耗可以忽略,但提高查找速度是明显的。

  1. 频繁作为 WHERE 查询条件的字段

某个字段在SELECT语句的 WHERE 条件中经常被使用到,那么就需要给这个字段创建索引了。尤其是在数据量大的情况下,创建普通索引就可以大幅提升数据查询的效率。

  1. 经常 GROUP BY 和 ORDER BY 的列

索引就是让数据按照某种顺序进行存储或检索,因此当我们使用 GROUP BY 对数据进行分组查询,或者使用 ORDER BY 对数据进行排序的时候,就需要对分组或者排序的字段进行索引。如果待排序的列有多个,那么可以在这些列上建立组合索引

如果既有GROUP BY又有ORDER BY,可以考虑联合索引,由于GROUP BY先执行,联合索引中GROUP BY使用的字段排列在前面。

  1. UPDATE、DELETE的WHERE条件列

当我们对某条数据进行UPDATE或者DELETE操作的时候,是否也需要对WHERE条件列创建索引呢?

对数据按照某个条件进行查询后再进行 UPDATE 或 DELETE 的操作,如果对 WHERE 字段创建了索引,就能大幅提升效率。原理是因为我们需要先根据 WHERE 条件列检索出来这条记录,然后再对它进行更新或删除。如果进行更新的时候,更新的字段是非索引字段,提升的效率会更明显,这是因为非索引字段更新不需要对索引进行维护

  1. DISTINCT字段需要创建索引

有时候我们需要对某个字段进行去重,使用 DISTINCT,那么对这个字段创建索引,也会提升查询效率。索引会对数据按照某种顺序进行排序,所以在去重的时候也会快很多。

  1. 多表 JOIN 连接操作时,创建索引注意事项

首先,连接表的数量尽量不要超过 3 张,因为每增加一张表就相当于增加了一次嵌套的循环,数量级增长会非常快,严重影响查询的效率

其次,对 WHERE 条件创建索引,因为 WHERE 才是对数据条件的过滤。如果在数据量非常大的情况下,没有 WHERE 条件过滤是非常可怕的。

最后,对用于连接的字段创建索引,并且该字段在多张表中的类型必须一致。

  1. 使用列的类型小的创建索引

我们这里所说的类型大小指的就是该类型表示的数据范围的大小。

我们在定义表结构的时候要显式的指定列的类型,以整数类型为例,有TINYINTMEDIUMINTINTBIGINT等,它们占用的存储空间依次递增,能表示的整数范围当然也是依次递增。如果我们想要对某个整数列建立索引的话,在表示的整数范围允许的情况下,尽量让索引列使用较小的类型,比如我们能使用INT就不要使用 BIGINT ,能使用 MEDIUMINT 就不要使用 INT。这是因为:

  • 数据类型越小,在查询时进行的比较操作越快;
  • 数据类型越小,索引占用的存储空间就越少,在一个数据页内就可以放下更多的记录 ,从而减少磁盘 I/O 带来的性能损耗,也就意味着可以把更多的数据页缓存在内存中,从而加快读写效率。

这个建议对于表的主键来说更加适用 ,因为不仅是聚簇索引中会存储主键值,其他所有的二级索引的节点处都会存储一份记录的主键值,如果主键使用更小的数据类型,也就意味着节省更多的存储空间和更高效的I/O。

  1. 使用字符串前缀创建索引

假设我们的字符串很长,那存储一个字符串就需要占用很大的存储空间。在我们需要为这个字符串列建立索引时,那就意味着在对应的B+树中有这么两个问题:

  • B+树索引中的记录需要把该列的完整字符串存储起来,更费时,而目字符串越长,在索引中占用的存储空间越大。
  • 如果B+树索引中索引列存储的字符串很长,那在做字符串比较时会占用更多的时间。

我们可以通过截取字段的前面一部分内容建立索引,这个就叫前缀索引。这样在查找记录时虽然不能精确的定位到记录的位置,但是能定位到相应前缀所在的位置,然后根据前缀相同的记录的主键值回表查询完整的字符串值。既节约空间,又减少了字符串的比较时间,还大体能解决排序的问题。

例如,TEXT和BLOG类型的字段,进行全文检索会很浪费时间,如果只检索字段前面的若干字符,这样可以提高检索速度。

示例:创建一张商户表,因为地址字段比较长,在地址字段上建立前缀索引

CREATE TABLE shop(address VARCHAR(120) NOT NULL);

ALTER TABLE shop ADD INDEX idx_address(address(12));

问题是,截取多少呢?截取得多了,达不到节省索引存储空间的目的;截取得少了,重复内容太多,字段的散列度(选择性)会降低。怎么计算不同的长度的选择性呢?

先看一下字段在全部数据中的选择度:

SELECT COUNT(DISTINCT address) / COUNT(*) FROM shop;

通过不同长度去计算,与全表的选择性对比:

公式:

COUNT(DISTINCT LEFT(列名, 索引长度)) / COUNT(*) 

例如:

SELECT COUNT(DISTINCT LEFT(address,10)) / COUNT(*) AS sub10, -- 截取前10个字符串的选择度
COUNT(DISTINCT LEFT(address,15)) / COUNT(*) AS sub15, -- 截取前15个字符串的选择度
COUNT(DISTINCT LEFT(address,20)) / COUNT(*) AS sub20, -- 截取前20个字符串的选择度
COUNT(DISTINCT LEFT(address,25)) / COUNT(*) AS sub25 -- 截取前25个字符串的选择度
FROM shop;

引申另一个问题:索引列前缀对排序的影响

如果使用了索引列前缀,比方说前边只把address列的 前12个字符 放到了二级索引中,下边这个查询可能就有点儿尴尬了:

SELECT * FROM shop
ORDER BY address
LIMIT 10;

因为二级索引中不包含完整的address列信息,所以无法对前12个字符相同,后边的字符不同的记录进行排序,也就是使用索引列前缀的方式,无法支持使用索引排序,只能使用文件排序。

拓展:Alibaba《 Java开发手册(黄山版)》

强制】在 varchar 字段上建立索引时,必须指定索引长度,没必要对全字段建立索引,根据实际文本区分度决定索引长度。

说明:索引的长度与区分度是一对矛盾体,一般对字符串类型数据,长度为20的索引,区分度会高达 90%以上,可以使用COUNT(DISTINCT LEFT(列名, 索引长度)) / COUNT(*) 的区分度来确定。

  1. 区分度高(散列性高)的列适合作为索引

列的基数指的是某一列中不重复数据的个数,比方说某个列包含值2, 5, 8, 2, 5, 8, 2, 5, 8,虽然有9条记录,但该列的基数却是3。也就是说,在记录行数一定的情况下,列的基数越大,该列中的值越分散;列的基数越小,该列中的值越集中。这个列的基数指标非常重要,直接影响我们是否能有效的利用索引,最好为列的基数大的列建立索引,为基数太小列的建立索引效果可能不好。

可以使用公式:

SELECT COUNT(DISTINCT 列名) / COUNT(*) FROM 表名;

计算区分度,越接近1越好,一般超过33%就算是比较高效的索引了。

拓展:联合索引把区分度高(散列性高)的列放在前面

  1. 使用最频繁的列放到联合索引的左侧

这样也可以较少的建立一些索引。同时,由于"最左前缀原则",可以增加联合索引的使用率。

  1. 在多个字段都要创建索引的情况下,联合索引优于单值索引

限制索引的数目

在实际工作中,我们也需要注意平衡,索引的数目不是越多越好。我们需要限制每张表上的索引数量,建议单张表索引数量不超过6个。原因:

  1. 每个索引都需要占用 磁盘空间,索引越多,需要的磁盘空间就越大。
  2. 索引会影响 INSERT、DELETE、UPDATE等语句的性能,因为表中的数据更改的同时,索引也会进行调整和更新,会造成负担。
  3. 优化器在选择如何优化查询时,会根据统一信息,对每一个可以用到的索引来进行评估,以生成出一个最好的执行计划,如果同时有很多个索引都可以用于查询,会增加MySQL优化器生成执行计划时间,降低查询性能。

哪些情况不适合创建索引

  1. 在where中使用不到的字段,不要设置索引

WHERE 条件(包括 GROUP BY、ORDER BY)里用不到的字段不需要创建索引,索引的价值是快速定位,如果起不到定位的字段通常是不需要创建索引的。

  1. 数据量小的表最好不要使用索引

如果表记录太少,比如少于 1000 个,那么是不需要创建索引的。表记录太少,是否创建索引对查询效率的影响并不大。甚至说,查询花费的时间可能比遍历索引的时间还要短,索引可能不会产生优化效果。

结论:在数据表中的数据行数比较少的情况下,比如不到1000行,是不需要创建索引的。

  1. 有大量重复数据的列上不要建立索引

在条件表达式中经常用到的不同值较多的列上建立索引,但字段中如果有大量重复数据,也不用创建索引。

比如在学生表的"性别"字段上只有“男”与“女”两个不同值,因此无须建立索引。如果建立索引,不但不会提高查询效率,反而会严重降低数据更新速度。

示例:要在 100 万行数据中查找其中的 50 万行(比如性别为男的数据),一旦创建了索引,你需要先访问 50万次索引,然后再访问 50 万次数据表,这样加起来的开销比不使用索引可能还要大。

索引的价值是帮你快速定位。如果想要定位的数据有很多,那么索引就失去了它的使用价值,比如通常情况下的性别字段。

结论:当数据重复度大,比如 高于10% 的时候,也不需要对这个字段使用索引。

  1. 避免对经常更新的表创建过多的索引

第一层含义:频繁更新的字段不一定要创建索引。因为更新数据的时候,也需要更新索引,如果索引太多,在更新索引的时候也会造成负担,从而影响效率。

第二层含义:避免对经常更新的表创建过多的索引,并且索引中的列尽可能少。此时,虽然提高了查询速度,同时却会降低更新表的速度。

  1. 不建议用无序的值作为索引

例如身份证、UUID(在索引比较时需要转为ASCII,并且插入时可能造成页分裂)、MD5、HASH、无序长字符串等。

  1. 删除不再使用或者很少使用的索引

表中的数据被大量更新,或者数据的使用方式被改变后,原有的一些索引可能不再需要。数据库管理员应当定期找出这些索引,将它们删除,从而减少索引对更新操作的影响。

  1. 不要定义冗余或重复的索引
  • 冗余索引

有时候有意或者无意的就对同一个列创建了多个索引,比如:index(a,b,c)相当于index(a)、index(a,b)、index(a,b,c)。

示例:

CREATE TABLE person_info (
	id INT UNSIGNED NOT NULL AUTO_INCREMENT,
	name VARCHAR (100) NOT NULL,
	birthday DATE NOT NULL,
	phone_number CHAR (11) NOT NULL,
	country VARCHAR (100) NOT NULL,
	PRIMARY KEY (id),
	KEY idx_name_birthday_phone_number (name(10), birthday, phone_number),
	KEY idx_name (name(10)) 
);

我们知道,通过idx_name_birthday_phone_number 索引就可以对 name 列进行快速搜索,再创建一个专门针对 name 列的索引就算是一个冗余索引,维护这个索引只会增加维护的成本,并不会对搜索有什么好处。

  • 重复索引

另一种情况,我们可能会对某个列重复建立索引:

CREATE TABLE repeat_index_demo (
	col1 INT PRIMARY KEY,
	co12 INT,
	UNIQUE uk_idx_c1 (col1),
	INDEX idx_c1 (col1)
);

我们看到,col1既是主键、又给它定义为一个唯一索引,还给它定义了一个普通索引。可是主键本身就会生成聚簇索引,所以定义的唯一索引和普通索引是重复的,这种情况要避免。

小结

索引是一把双刃剑,可提高查询效率,但也会降低插入和更新的速度并占用磁盘空间。

选择索引的最终目的是为了使查询的速度变快,上面给出的原则是最基本的准则,但不能拘泥于上面的准则,大家要在以后的学习和工作中进行不断的实践,根据应用的实际情况进行分析和判断,选择最合适的索引方式。

你可能感兴趣的:(数据库,数据库,sql,mysql)