yolov8分割模型onnx推理预测

文章目录

  • 前言
  • 一、命令
      • 预测单张图的命令:
          • python v8_seg_onnx.py --path 1.jpg --save_path 2.jpg --imgsz 640 --weight best.onnx --device cpu --show_time --save_masks --save_box
      • 预测文件夹的命令:
          • python v8_seg_onnx.py --path val_dir_name --save_path results_dir_name --imgsz 640 --weight best.onnx --device cpu --show_time --save_masks --save_box
      • 注:具体解释参考代码的help和参数示例,带☆的参数必填,保存结果的方式save_masks和save_box必须任选其一设为True,否则没有输出结果
  • 二、代码
  • 总结

前言

原创,创作不易请勿抄袭,如需引用请标明出处,有任何问题欢迎评论区或私聊,感谢!

一、命令

预测单张图的命令:

python v8_seg_onnx.py --path 1.jpg --save_path 2.jpg --imgsz 640 --weight best.onnx --device cpu --show_time --save_masks --save_box

预测文件夹的命令:

python v8_seg_onnx.py --path val_dir_name --save_path results_dir_name --imgsz 640 --weight best.onnx --device cpu --show_time --save_masks --save_box

参数解释(必须参数前面带☆):
☆ path:预测图片路径或存储图片的文件夹路径
☆ save_path:预测结果保存路径,如果预测图片的路径是目录,这里也要指定目录,并且目录已存在
☆weight:onnx模型路径,此代码只支持onnx的模型
save_masks:预测结果保存掩码图(默认不保存)
save_box:预测结果保存矩形框(默认不保存)
imgsz:模型输入图像大小(默认640)
device:cpu或者gpu(默认cpu)
show_time:显示前处理、预测、后处理的时间(默认不显示)
conf_thres:预测阈值(默认0.25)
iou_thres:IOU阈值(默认0.7)

注:具体解释参考代码的help和参数示例,带☆的参数必填,保存结果的方式save_masks和save_box必须任选其一设为True,否则没有输出结果

二、代码

import argparse
import cv2
import math
import numpy as np
from numpy import array
import onnxruntime as rt
import os
import time
from tqdm import tqdm


class LetterBox:
    """
    前处理步骤:resize图像大小和边界填充
    """

    def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, stride=32):
        self.new_shape = new_shape
        self.auto = auto
        self.scaleFill = scaleFill
        self.scaleup = scaleup
        self.stride = stride

    def __call__(self, labels=None, image=None):
        if labels is None:
            labels = {}
        img = labels.get('img') if image is None else image
        shape = img.shape[:2]  # current shape [height, width]
        new_shape = labels.pop('rect_shape', self.new_shape)
        if isinstance(new_shape, int):
            new_shape = (new_shape, new_shape)

        # Scale ratio (new / old)
        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
        # only scale down, do not scale up (for better val mAP)
        if not self.scaleup:
            r = min(r, 1.0)

        # Compute padding
        ratio = r, r  # width, height ratios
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
        dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - \
            new_unpad[1]  # wh padding
        if self.auto:  # minimum rectangle
            dw, dh = np.mod(dw, self.stride), np.mod(
                dh, self.stride)  # wh padding
        elif self.scaleFill:  # stretch
            dw, dh = 0.0, 0.0
            new_unpad = (new_shape[1], new_shape[0])
            ratio = new_shape[1] / shape[1], new_shape[0] / \
                shape[0]  # width, height ratios

        dw /= 2  # divide padding into 2 sides
        dh /= 2
        if labels.get('ratio_pad'):
            labels['ratio_pad'] = (labels['ratio_pad'],
                                   (dw, dh))  # for evaluation

        if shape[::-1] != new_unpad:  # resize
            img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
        top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
        left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
        img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT,
                                 value=(114, 114, 114))  # add border

        if len(labels):
            labels = self._update_labels(labels, ratio, dw, dh)
            labels['img'] = img
            labels['resized_shape'] = new_shape
            return labels
        else:
            return img

    def _update_labels(self, labels, ratio, padw, padh):
        """Update labels"""
        labels['instances'].convert_bbox(format='xyxy')
        labels['instances'].denormalize(*labels['img'].shape[:2][::-1])
        labels['instances'].scale(*ratio)
        labels['instances'].add_padding(padw, padh)
        return labels


class non_max_suppression:
    """
    后处理步骤:非极大值抑制
    """

    def __init__(self, conf_thres=0.25, iou_thres=0.45, nc=0,  # number of classes (optional)
                 agnostic=False, multi_label=False, max_det=300,
                 max_time_img=0.05, max_nms=30000, max_wh=7680):
        self.conf_thres = conf_thres
        self.iou_thres = iou_thres
        self.nc = nc
        self.agnostic = agnostic
        self.multi_label = multi_label
        self.max_det = max_det
        self.max_time_img = max_time_img
        self.max_nms = max_nms
        self.max_wh = max_wh

    def __call__(self, prediction):
        # assert 0 <= self.conf_thres <= 1, f'Invalid Confidence threshold {self.conf_thres}, valid values are between 0.0 and 1.0'
        # assert 0 <= self.iou_thres <= 1, f'Invalid IoU {self.iou_thres}, valid values are between 0.0 and 1.0'
        # if isinstance(prediction, (list, tuple)):  # YOLOv8 model in validation model, output = (inference_out, loss_out)
        #     prediction = prediction[0]  # select only inference output
        self.prediction = prediction
        bs = self.prediction.shape[0]  # batch size
        nc = self.nc or (self.prediction.shape[1] - 4)  # number of classes
        nm = self.prediction.shape[1] - nc - 4
        mi = 4 + nc  # mask start index
        xc = self.prediction[:, 4:mi].max(1) > self.conf_thres  # candidates

        # Settings
        # min_wh = 2  # (pixels) minimum box width and height
        time_limit = 0.5 + self.max_time_img * bs  # seconds to quit after
        self.multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)

        t = time.time()
        output = [np.zeros((0, 6 + nm), dtype=np.uint8)] * bs
        for xi, x in enumerate(self.prediction):  # image index, image inference
            x = x.transpose(1, 0)[xc[xi]]  # confidence

            box, cls, mask = x[:, :4], x[:, 4:nc+4], x[:, -nm:]
            # center_x, center_y, width, height) to (x1, y1, x2, y2)
            box = self.xywh2xyxy(box)
            if self.multi_label:
                i, j = (cls > self.conf_thres).nonzero(as_tuple=False).T
                x = np.concatenate(
                    (box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1)
            else:  # best class only
                conf, j = cls.max(1).reshape(cls.shape[0], 1), cls.argmax(
                    1).reshape(cls.shape[0], 1)
                x = np.concatenate((box, conf, j.astype(np.float64), mask), 1)[
                    conf.reshape(-1) > self.conf_thres]

            # Check shape
            n = x.shape[0]  # number of boxes
            if not n:  # no boxes
                continue
            x = x[(-x[:, 4]).argsort()[:self.max_nms]]

            # Batched NMS
            c = x[:, 5:6] * (0 if self.agnostic else self.max_wh)  # classes
            # boxes (offset by class), scores
            boxes, scores = x[:, :4] + c, x[:, 4]
            i = self.numpy_nms(boxes, scores, self.iou_thres)  # NMS
            i = i[:self.max_det]  # limit detections

            output[xi] = x[i]
            if (time.time() - t) > time_limit:
                print(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded')
                break  # time limit exceeded
        return output

    def xywh2xyxy(self, x):
        y = np.copy(x)
        y[..., 0] = x[..., 0] - x[..., 2] / 2  # top left x
        y[..., 1] = x[..., 1] - x[..., 3] / 2  # top left y
        y[..., 2] = x[..., 0] + x[..., 2] / 2  # bottom right x
        y[..., 3] = x[..., 1] + x[..., 3] / 2  # bottom right y
        return y

    def box_area(self, boxes: array):
        """
        :param boxes: [N, 4]
        :return: [N]
        """
        return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])

    def box_iou(self, box1: array, box2: array):
        """
        :param box1: [N, 4]
        :param box2: [M, 4]
        :return: [N, M]
        """
        area1 = self.box_area(box1)  # N
        area2 = self.box_area(box2)  # M
        # broadcasting, 两个数组各维度大小 从后往前对比一致, 或者 有一维度值为1;
        lt = np.maximum(box1[:, np.newaxis, :2], box2[:, :2])
        rb = np.minimum(box1[:, np.newaxis, 2:], box2[:, 2:])
        wh = rb - lt
        wh = np.maximum(0, wh)  # [N, M, 2]
        inter = wh[:, :, 0] * wh[:, :, 1]
        iou = inter / (area1[:, np.newaxis] + area2 - inter)
        return iou  # NxM

    def numpy_nms(self, boxes: array, scores: array, iou_threshold: float):
        idxs = scores.argsort()  # 按分数 降序排列的索引 [N]
        keep = []
        while idxs.size > 0:  # 统计数组中元素的个数
            max_score_index = idxs[-1]
            max_score_box = boxes[max_score_index][None, :]
            keep.append(max_score_index)

            if idxs.size == 1:
                break
            idxs = idxs[:-1]  # 将得分最大框 从索引中删除; 剩余索引对应的框 和 得分最大框 计算IoU;
            other_boxes = boxes[idxs]  # [?, 4]
            ious = self.box_iou(max_score_box, other_boxes)  # 一个框和其余框比较 1XM
            idxs = idxs[ious[0] <= iou_threshold]

        keep = np.array(keep)
        return keep


class process_mask:
    """
    后处理步骤:上采样还原mask大小
    """

    def __init__(self, shape, upsample=False) -> None:
        self.shape = shape
        self.upsample = upsample

    def __call__(self, protos, masks_in, bboxes, *args, **kwds):
        c, mh, mw = protos.shape  # CHW
        ih, iw = self.shape

        sigmoid_masks = []
        for i in range(masks_in.shape[0]):
            sigmoid_masks.append(self.sigmoid_function(
                (masks_in @ protos.astype(np.float64).reshape(c, -1))[i]))

        masks = np.array(sigmoid_masks).reshape(-1, mh, mw)  # CHW

        downsampled_bboxes = bboxes.copy()
        downsampled_bboxes[:, 0] *= mw / iw
        downsampled_bboxes[:, 2] *= mw / iw
        downsampled_bboxes[:, 3] *= mh / ih
        downsampled_bboxes[:, 1] *= mh / ih

        masks = self.crop_mask(masks, downsampled_bboxes)  # CHW
        if self.upsample:
            masks = (masks*255).astype(np.uint8)
            masks = masks.transpose(1, 2, 0)
            masks = cv2.resize(masks, self.shape)
            masks[masks <= (255*0.5)] = 0.0
            masks[masks > (255*0.5)] = 1.0
        return masks

    def sigmoid_function(self, z):
        return 1 / (1 + np.exp(-z))

    def crop_mask(self, masks, boxes):
        n, h, w = masks.shape
        x1, y1, x2, y2 = np.array_split(
            boxes[:, :, None], 4, 1)  # x1 shape(1,1,n)
        r = np.array(range(w), dtype=np.float64).reshape(
            1, 1, -1)  # rows shape(1,w,1)
        c = np.array(range(h), dtype=np.float64).reshape(
            1, -1, 1)  # cols shape(h,1,1)

        return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))


class scale_boxes:
    def __init__(self, img1_shape, ratio_pad=None):
        """
        后处理步骤:缩放矩形框
        """
        self.img1_shape = img1_shape
        self.ratio_pad = ratio_pad

    def __call__(self, img0_shape, boxes, *args, **kwds):
        self.img0_shape = img0_shape
        if self.ratio_pad is None:  # calculate from img0_shape
            # gain  = old / new
            gain = min(self.img1_shape[0] / self.img0_shape[0],
                       self.img1_shape[1] / self.img0_shape[1])
            pad = (self.img1_shape[1] - self.img0_shape[1] * gain) / \
                2, (self.img1_shape[0] - self.img0_shape[0]
                    * gain) / 2  # wh padding
        else:
            gain = self.ratio_pad[0][0]
            pad = self.ratio_pad[1]

        boxes[..., [0, 2]] -= pad[0]  # x padding
        boxes[..., [1, 3]] -= pad[1]  # y padding
        boxes[..., :4] /= gain

        boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(
            0, self.img0_shape[1])  # x1, x2
        boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(
            0, self.img0_shape[0])  # y1, y2
        return boxes


class Colors:
    """
    保存结果时矩形框和masks的颜色,每种类别一个颜色
    """

    def __init__(self):
        # hex = matplotlib.colors.TABLEAU_COLORS.values()
        hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
                '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
        self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
        self.n = len(self.palette)

    def __call__(self, i, bgr=False):
        c = self.palette[int(i) % self.n]
        return (c[2], c[1], c[0]) if bgr else c

    @staticmethod
    def hex2rgb(h):  # rgb order (PIL)
        return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))


class save_img:
    def __init__(self, save_masks=False, save_box=False, cls_name=None):
        self.save_masks = save_masks
        self.save_box = save_box
        self.name = cls_name

    def __call__(self, save_path, masks, boxes, scores, cls,
                 im_gpu, im_shape, im, colors):
        self.masks,self.im_gpu,self.im_shape,self.im=masks,im_gpu, im_shape, im
        self.boxes, self.scores, self.cls, self.colors = boxes, scores, cls, colors
        if self.save_masks and self.save_box:
            masks_write = self.masks_write(
                masks=masks, im_gpu=im_gpu, im_shape=im_shape, im=im.copy())
            # ,self.box_list,self.scores_list))
            cv2.imwrite(save_path, self.box_write(masks_write.copy()))
        elif self.save_masks:  # 只保存掩码
            cv2.imwrite(save_path, self.masks_write(
                masks=masks, im_gpu=im_gpu, im_shape=im_shape, im=im.copy()))
        elif self.save_box:  # 只保存矩形框
            # ,self.box_list,self.scores_list))
            cv2.imwrite(save_path, self.box_write(self.im.copy()))
        else:
            cv2.imwrite(save_path, self.im.copy())

    def box_write(self, image):  # ,box_list,scores_list
        """
        输出结果中保存矩形框
        """
        box_write = image.copy()
        for box, scores, cls, colors in zip(self.boxes, self.scores, self.cls, self.colors):
            cx = int(box[0])  # np.mean([int(box[0]), int(box[2])])
            cy = int(box[1])  # np.mean([int(box[1]), int(box[3])])
            box_write = cv2.rectangle(box_write, (int(box[0]), int(box[1])), (int(
                box[2]), int(box[3])), color=colors, thickness=2)

            mess = str(self.name[int(cls)])+':%.2f' % scores
            h, w = image.shape[:2]
            retval, _ = cv2.getTextSize(mess, 0, 1e-3 * h, 1)  # 计算文本的宽和高
            box_write = cv2.rectangle(box_write, (int(box[0]), max(int(box[1]-retval[1]), 0)), (min(int(
                box[0]+retval[0]), w), int(box[1])), color=colors, thickness=-1)  # 画文本的背景填充框
            cv2.putText(box_write, mess, (int(cx), int(cy)),  # 画文本内容(类别:置信度)
                        0, 1e-3 * h, (255, 255, 255), 1)
        return box_write

    def masks_write(self, masks, im_gpu, im_shape, im, alpha=0.5, retina_masks=False):
        """
        输出结果中保存masks
        """
        colors = np.array(self.colors, dtype=np.float32)/255.0*alpha
        if len(masks.shape) == 3:
            masks = masks.transpose(2, 0, 1)[:, :, :, None]  # shape(n,h,w,1)
        else:
            masks = masks[None, :, :, None]
        masks_color = [masks[i] * colors[i]
                       for i in range(masks.shape[0])]  # shape(n,h,w,3)

        inv_alph_masks = (1 - masks * alpha).cumprod(0)  # shape(n,h,w,1)
        mcs = (masks_color * inv_alph_masks).sum(0) * \
            2  # mask color summand shape(n,h,w,3)

        im_gpu = im_gpu[::-1, :, :]
        im_gpu = im_gpu.transpose(1, 2, 0)  # shape(h,w,3)
        im_gpu = im_gpu * inv_alph_masks[-1] + mcs
        im_mask = (im_gpu * 255)
        im_mask_np = im_mask
        im[:] = im_mask_np if retina_masks else self.scale_image(
            im_gpu.shape, im_mask_np, im_shape)
        # 画置信度
        for box, scores, cls, colors in zip(self.boxes, self.scores, self.cls, self.colors):
            cx = int(box[0])  # np.mean([int(box[0]), int(box[2])])
            cy = int(box[1])  # np.mean([int(box[1]), int(box[3])])
            mess = str(self.name[int(cls)])+':%.2f' % scores
            h, w = im.shape[:2]
            retval, _ = cv2.getTextSize(mess, 0, 1e-3 * h, 1)  # 计算文本的宽和高
            im = cv2.rectangle(im, (int(box[0]), max(int(box[1]-retval[1]), 0)), (min(int(
                box[0]+retval[0]), w), int(box[1])), color=colors, thickness=-1)  # 画文本的背景填充框
            cv2.putText(im, mess, (int(cx), int(cy)), 0,  # 画文本内容(类别:置信度)
                        1e-3 * h, (255, 255, 255), 1)
        return im

    def scale_image(self, im1_shape, masks, im0_shape, ratio_pad=None):
        """
        输出结果中保存masks时缩放图像
        """
        # Rescale coordinates (xyxy) from im1_shape to im0_shape
        if ratio_pad is None:  # calculate from im0_shape
            # gain  = old / new
            gain = min(im1_shape[0] / im0_shape[0],
                       im1_shape[1] / im0_shape[1])
            pad = (im1_shape[1] - im0_shape[1] * gain) / \
                2, (im1_shape[0] - im0_shape[0] * gain) / 2  # wh padding
        else:
            pad = ratio_pad[1]
        top, left = int(pad[1]), int(pad[0])  # y, x
        bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0])

        if len(masks.shape) < 2:
            raise ValueError(
                f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
        masks = masks[top:bottom, left:right]
        masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))

        if len(masks.shape) == 2:
            masks = masks[:, :, None]
        return masks


class Segmentation_inference:
    def __init__(self, model_path, device, conf_thres=0.25, iou_thres=0.7, imgsz=640,
                 save_masks=False, save_box=False, show_time=False) -> None:
        providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if device != 'cpu' else [
            'CPUExecutionProvider']
        self.sess = rt.InferenceSession(
            model_path, providers=providers)  # 实例化推理类
        self.input_name = self.sess.get_inputs()[0].name  # ,模型输入
        self.out_name = [
            output.name for output in self.sess.get_outputs()]  # 模型输出
        self.name = eval(self.sess.get_modelmeta(
        ).custom_metadata_map['names'])  # 类别名,种类名
        self.LetterBox = LetterBox(new_shape=(
            imgsz, imgsz))  # 前处理,resize和填充矩形框
        self.NMS = non_max_suppression(
            conf_thres=conf_thres, iou_thres=iou_thres, nc=len(self.name))  # 后处理,极大值抑制
        self.Process_Mask = process_mask(
            shape=(imgsz, imgsz), upsample=True)  # 后处理,上采样还原掩码大小
        self.Scale_Boxes = scale_boxes(img1_shape=(imgsz, imgsz))  # 后处理,缩放矩形框
        self.save_img = save_img(
            save_masks=save_masks, save_box=save_box, cls_name=self.name)  # 保存输出结果
        self.show_time = show_time  # 是否打印运行时间

    def __call__(self, *args, **kwds):
        self.im = cv2.imdecode(np.fromfile(kwds['path'], dtype=np.int8), 1)
        # 前处理
        time1 = time.time()
        self.im0 = self.img_pretreatment(im=self.im)
        time2 = time.time()

        # 推理
        time3 = time.time()
        self.preds = self.sess.run(
            self.out_name, {self.input_name: [self.im0]})
        time4 = time.time()

        # 后处理
        time5 = time.time()
        self.masks, self.box_list, self.scores_list, self.cls = self.img_reprocessing(
            preds=self.preds)
        time6 = time.time()

        # 打印处理时间及保存结果
        if self.show_time:  # 打印运行时间
            print(f'\npretreatment——time:{(time2-time1)*1000}ms')
            print(f'inference——time:{(time4-time3)*1000}ms')
            print(f'reprocessing——time:{(time6-time5)*1000}ms')
            print('-----------------------------')

        if type(self.masks) == type(None):  # 如果没有目标,则保存原图
            cv2.imwrite(kwds['save_path'], self.im)
            return None

        colors = Colors()
        self.colors = [colors(x, True) for x in self.cls]  # 每一种类别一个颜色
        self.save_img(save_path=kwds['save_path'], masks=np.array(  # 保存结果
            self.masks), boxes=self.box_list, scores=self.scores_list, cls=self.cls,
            im_gpu=self.im0, im_shape=self.im.shape, im=self.im.copy(),
            colors=self.colors)
        return True

    def img_pretreatment(self, im):
        """
        前处理
        """
        im1 = self.LetterBox(image=im)
        im2 = im1.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
        im3 = np.ascontiguousarray(im2)  # contiguous
        im4 = im3.astype(np.float32)/255.0
        return im4

    def img_reprocessing(self, preds):
        """
        后处理
        """
        p = self.NMS(prediction=preds[0])
        if len(p[0]) == 0:
            return (None, None, None, None)
        proto = self.preds[1][-1] if len(self.preds[1]) == 3 else self.preds[1]
        for i, pred in enumerate(p):
            masks = self.Process_Mask(
                protos=proto[i], masks_in=pred[:, 6:], bboxes=pred[:, :4])
            pred[:, :4] = self.Scale_Boxes(
                img0_shape=self.im.shape, boxes=pred[:, :4])
        return masks, pred[:, :4], pred[:, 4], pred[:, 5]


def parse_opt(known=False):
    parser = argparse.ArgumentParser()
    parser.add_argument('--path', type=str,
                        default='test_img.jpg', help='Image Path or Image dir path')  # 预测路径
    parser.add_argument('--save_path', type=str,
                        default='result_img.jpg', help='result Image save Path or dir path')  # 保存路径
    parser.add_argument('--weight', type=str,
                        default='test.onnx', help='weights path')  # 模型路径
    parser.add_argument('--imgsz', type=int,
                        default=640, help='Input Image Size')  # 模型输入图片大小
    parser.add_argument('--device', type=str, default='cpu',
                        help='Hardware devices')  # 使用cpu还是GPU
    parser.add_argument('--save_masks', action='store_true',
                        default=False, help='save the mask?')  # 结果是否保存masks
    parser.add_argument('--save_box', action='store_true',
                        default=False, help='save the box?')  # 结果是否保存box
    parser.add_argument('--show_time', action='store_true',
                        default=False, help='Output processing time')  # 是否显示预处理和推理时间
    parser.add_argument('--conf_thres', type=float,
                        default=0.25, help='Confidence level threshold')  # 置信度阈值
    parser.add_argument('--iou_thres', type=float,
                        default=0.7, help='IOU threshold')  # IOU阈值
    return parser.parse_args()


def main(opt):
    calculate = Segmentation_inference(opt.weight, opt.device,  # 模型路径和是否使用GPU
                                       conf_thres=opt.conf_thres,  # 置信度阈值,小于阈值的预测结果会被删除
                                       iou_thres=opt.iou_thres,  #  IOU阈值,大于阈值的预测结果会被删除
                                       imgsz=opt.imgsz,  # 输入图片的大小
                                       save_masks=opt.save_masks,  # 是否保存masks
                                       save_box=opt.save_box,  # 是否保存box
                                       show_time=opt.show_time,  # 是否打印预处理和推理时间
                                       )

    inference_images_Path = []  # 需要预测的图片路径列表
    save_images_path = []  # 保存的图片路径列表
    if not os.path.isdir(opt.path):  # 检测单张图片
        assert not os.path.isdir(
            opt.save_path), '预测路径为图片名,则保存路径也应该指定为文件名,而不是目录(加上后缀!)'
        inference_images_Path.append(opt.path)
        save_images_path.append(opt.save_path.split('.')[0]+'.jpg')
    else:  # 检测一个文件夹中的图片
        assert os.path.isdir(
            opt.save_path), '预测路径为文件夹目录,则保存路径也应该指定为已存在的某个文件夹目录(目录路径一定要存在!)'
        for img_path in os.listdir(opt.path):
            inference_images_Path.append(os.path.join(opt.path, img_path))
            save_images_path.append(os.path.join(opt.save_path, img_path))
    for path, save_path in zip(tqdm(inference_images_Path), save_images_path):
        try:
            assert type(calculate(path=path,  # 预测路径
                        save_path=save_path,  # 保存路径
                                  )) != type(None), f'\n{path}:没有检测到目标,请适当调低阈值'
        except BaseException as e:
            print(e)


if '__main__' == __name__:
    opt = parse_opt()
    main(opt)

总结

人懒,此处省略,有问题欢迎评论区或者私信。。。。。。。.。。.。.。。.。。。。。

你可能感兴趣的:(python,机器学习,深度学习,计算机视觉,人工智能)