- 《R循环:深度解析与高效使用技巧》
沐知全栈开发
开发语言
《R循环:深度解析与高效使用技巧》引言R语言作为一种功能强大的统计计算和图形显示语言,被广泛应用于科研、数据分析、金融等领域。R循环是R语言中的核心概念之一,对于提高编程效率、处理复杂数据至关重要。本文将深度解析R循环,并介绍高效使用技巧,帮助读者更好地掌握R语言。一、R循环概述1.1什么是R循环R循环是指在R语言中,重复执行某个操作或代码段的过程。R循环包括for循环、while循环和repea
- 使用 Spread.net将 Excel 中的文本拆分为多段
.net
引言:在.NET应用程序中处理Excel数据时,常常会碰到需要把文本拆分成多段的情况。例如在数据清洗、数据分析等场景下,将长文本按照特定规则拆分为多段能让数据更便于处理和分析。Spread.NET作为一款强大的.NET电子表格组件,为我们提供了有效的解决方案。本文将详细介绍如何使用Spread.net将Excel中的文本拆分为多段,涵盖多种实现方式,帮助开发者在.NET应用程序中高效地管理数据。在
- 释放数据处理潜力:13款顶级MCP服务器全面解析
炼丹上岸
MCP大模型服务器php运维python
引言:数据整理师的效率革命作为数据整理师,你是否曾为繁琐的数据清洗、格式转换和跨平台整合耗费大量时间?传统数据处理流程中,手动操作往往成为效率瓶颈——从杂乱的CSV文件到分散在多平台的API数据,每一步都可能陷入"数据泥潭"。而MCP(Multi-ChannelProcessing)服务器的出现,正通过自动化与智能化能力重构这一现状。本文将深入解析13款适用于不同场景的MCP服务器,覆盖从网络数据
- Oracle 进阶语法实战:从多维分析到数据清洗的深度应用(第四课)
AI、少年郎
oracle数据库
在《Oracle树形统计再进阶》(第三课)基础上,我们跳出传统SQL聚合框架,探索Oracle特有的高级语法特性,包括多维分析神器MODEL子句、数据清洗利器正则表达式、PL/SQL存储过程优化,以及基于执行计划的查询调优技巧。这些技术能解决传统方法难以处理的复杂场景,如动态列生成、不规则数据清洗、批量数据处理等。一、MODEL子句:多维数据建模与动态透视业务场景:动态生成各部门全年度各季度请假类
- 物流数据行业分析(包含完整代码和流程)------python数据分析师项目Anaconda
欲梦yhd
数据分析项目大数据condapython
一、引言数据分析流程为明确目的、获取数据、数据探索和预处理、分析数据、得出结论、验证结论、结果展现。物流业务中对数据进行深入挖掘和分析的过程,旨在提高运输效率、降低运输成本、提高客户满意度,以及提高公司的竞争力。本案例物流数据分析目的:a、配送服务是否存在问题b、是否存在尚有潜力的销售区域c、商品是否存在质量问题二、详细流程1、数据预处理(数据清洗)(1)数据导入使用panda库读取数据,编码方式
- R语言与C语言混合编程:在R语言中调用C语言函数
数据探索
r语言c语言开发语言R语言
R语言与C语言混合编程:在R语言中调用C语言函数介绍:R语言是一种用于统计分析和数据可视化的高级编程语言,而C语言是一种通用的、强大的编程语言。在某些情况下,我们可能需要在R语言中调用C语言函数以提高性能或实现特定的功能。本文将介绍如何在R语言中调用C语言函数的方法,并提供相应的源代码示例。步骤:为了在R语言中调用C语言函数,我们需要执行以下步骤:编写C语言函数:首先,我们需要编写我们想要在R中调
- 倾向得分匹配的stata命令_R语言系列1:倾向得分匹配
weixin_39995108
倾向得分匹配的stata命令
1PSM简介倾向评分匹配(PropensityScoreMatching,简称PSM)是一种统计学方法,用于处理观察研究(ObservationalStudy)的数据。在观察研究中,由于种种原因,数据偏差(bias)和混杂变量(confoundingvariable)较多,倾向评分匹配的方法正是为了减少这些偏差和混杂变量的影响,以便对实验组和对照组进行更合理的比较。这种方法最早由PaulRosen
- r语言 回归分析 分类变量_R语言下的PSM分析分类变量处理与分析步骤
weixin_39715834
r语言回归分析分类变量r语言清除变量
最近学习了PSM,我选择了用R去跑PSM,在这过程中遇到了许多问题,最后也都一一解决了,写下这个也是希望大家在遇到相同问题的时候能够得到帮助和启发,别的应该不会遇到太难的问题了哈哈。最近我也没做什么,录数据,或者说还在调整心态,最近遇到的事情也比较多,又或者说最近的心态比较乱,晚上也睡不好导致白天也比较烦躁,所以可能还是需要一段时间去好好调整,因此最近更新的也比较慢。不过还是会坚持的。问题阐述:1
- R语言倾向性匹配得分(PSM)分析
后端工程实践
r语言java开发语言R语言
R语言倾向性匹配得分(PSM)分析倾向性匹配得分(PropensityScoreMatching,PSM)是一种常用的统计方法,用于处理观察研究中的选择性偏倚。它通过建立一个倾向性得分模型,将受试者分为处理组和对照组,以实现类似于随机对照试验的效果。本文将介绍如何使用R语言进行倾向性匹配得分分析,并提供相应的源代码。导入所需的R包在进行PSM分析之前,首先需要导入所需的R包。常用的包包括Match
- R语言入门课| 05 一文掌握R语言常见数据类型
Biomamba生信基地
r语言信息可视化开发语言生信医药
视频教程大家可以先做一做R语言基础小测验,看看自己是否需要跟我们5.5h入门R语言的课程。先上教程视频,B站同步播出:https://www.bilibili.com/video/BV1miNVeWEkw完整视频回放和答疑服务可见:5.5h入门R语言本节课程视频:(点击此处查看)"R语言入门课"是我们认为生信小白入门不得不听的一个课程,我们也为这个课程准备了许多干货。R语言的精髓便是数据处理,在本
- 算法大厨日记:猫猫狐狐带你用代码做一锅香喷喷的“预测汤”
Gyoku Mint
AI修炼日记猫猫狐狐的小世界人工智能人工智能机器学习python算法database深度学习数据挖掘
️【开场·今天的料理名叫“预测炖汤”】猫猫:“咱今天突发奇想,决定用机器学习代码给你炖一锅‘预测汤’喵!这不是教你代码,是要告诉你怎么把‘算法’吃进肚子里~”狐狐:“别急,她又在打比方了。这锅汤从数据准备到调参优化,就跟你平常做饭的过程没两样,只不过食材都被咱们用代码换了一遍。”【第一步·数据准备,就是挑菜啦】猫猫:“首先是挑菜(数据预处理),不能什么菜都扔进去锅里吧?要洗干净去皮(数据清洗),再
- R 语言简介:数据分析与统计的强大工具
Mikhail_G
python数据分析大数据r语言开发语言
大家好!在如今这个数据驱动的时代,数据分析与统计分析对于各个领域都变得至关重要。而R语言,作为一款专为数据分析和统计而设计的编程语言,以其强大的功能和灵活性,成为了众多数据分析师、研究人员以及统计学家的首选工具之一。什么是R语言?R是一种开源的编程语言和软件环境,主要用于统计计算、数据分析、图形表示以及机器学习等领域。它是由RossIhaka和RobertGentleman于1995年开发的,之后
- Python爬虫(56)Python数据清洗与分析实战:Pandas+Dask双剑合璧处理TB级结构化数据
一个天蝎座 白勺 程序猿
Python爬虫入门到高阶实战python爬虫pandas
目录引言:大数据时代的清洗革命一、数据清洗基础:Pandas核心方法论1.1数据去重策略深度解析1.1.1精确去重与模糊去重1.1.2智能去重策略1.2缺失值处理金字塔模型1.2.1基础处理方法1.2.2智能缺失处理二、Dask架构解析:突破单机内存限制2.1Dask核心组件图谱2.2DaskDataFrame核心API映射表三、TB级数据清洗实战:电商订单数据分析3.1场景描述3.2分布式清洗流
- DeepSeek在数据分析与科学计算中的革命性应用
软考和人工智能学堂
#DeepSeek快速入门Python开发经验#深度学习python机器学习开发语言
1.数据预处理自动化1.1智能数据清洗fromdeepseekimportDataCleanerimportpandasaspddefauto_clean_data(df):cleaner=DataCleaner()analysis=cleaner.analyze(df)print("数据问题诊断:")forissueinanalysis['issues']:print(f"-{issue['ty
- python pandas数据清洗
扶子
python开发语言经验分享pandas数据清洗
一、介绍:2024金砖python样题中数据清洗部分代码实现二、任务要求:数据集中有购药时间、社保卡号、商品编码、商品名称、销售数量、应收金额、实收金额几个字段,请你使用NumPy和Pandas按如下要求对数据进行清洗:1.购药时间就是销售时间,为了后续分析更好的理解字段,将"购药时间"改为"销售时间";2.任何一条数据中只要有一个缺失值就删除该条数据;3.将销售数量、应收金额、实收金额三列的数据
- “易问易视”——让数据分析像聊天一样简单
二十十十十十
数据分析数据挖掘
一、项目简介“易问易视”通过自然语言理解和大语言模型技术,将用户的中文查询自动转化为数据处理指令,实现无代码的数据检索与图表生成。你只要在大屏上输入一句话,比如“2024年每月有多少人出境”,它就能自动看懂你要查的时间、指标、维度,然后在后台用Pandas和NumPy把国家统计局或行业CSV里的数据清洗、筛选、聚合好,再用Matplotlib、Plotly画出柱状图、折线图、饼图甚至地图,最后在S
- Power BI学习顺序指南
专注VB编程开发20年
学习信息可视化
在PowerBI的学习旅程中,你是否曾感到迷茫,投入了大量时间却看不到效果?其实,90%的问题都出在学习顺序不对上!别担心,按照这份正确的学习路径,帮助你在1个月内系统提升效率和技能!1️⃣基础准备:首先安装PowerBIDesktop并熟悉基本功能。2️⃣数据准备:掌握数据清洗和PowerQuery编辑器的使用。3️⃣数据建模:学会创建关系模型和DAX基础公式。4️⃣数据可视化:设计图表和仪表盘
- 大数据时代:如何构建高效的数据中台架构?
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶大数据架构ai
大数据时代:如何构建高效的数据中台架构?关键词:数据中台、架构设计、数据治理、数据服务、微服务架构、云计算、大数据技术摘要:在企业数字化转型加速的背景下,数据中台作为连接数据资源与业务应用的核心枢纽,已成为释放数据价值的关键基础设施。本文从数据中台的核心概念出发,系统解析其技术架构与实施路径,涵盖数据采集、存储计算、治理服务等核心模块的设计原理。通过Python代码示例演示数据清洗与服务接口开发,
- R 语言中的判断语句
lsx202406
开发语言
R语言中的判断语句在R语言编程中,判断语句是执行条件逻辑的基础。它们允许程序根据特定的条件执行不同的代码块。本文将深入探讨R语言中的几种常见判断语句,包括if语句、if-else语句和switch语句,并探讨它们的用法和场景。1.if语句if语句是R语言中最基本的条件判断结构。它的基本形式如下:if(条件){#条件为真时执行的代码块}当条件为真时,R会执行大括号内的代码块。如果条件为假,则不会执行
- 从0开始学习R语言--Day31--概率图模型
Chef_Chen
学习
在探究变量之间的相关性时,由于并不是每次分析数据时所用的样本集都能囊括所有的情况,所以单纯从样本集去下判断会有武断的嫌疑;同样的,我们有时候也想要在数据样本不够全面时就能对结果有个大概的了解。例如医生在给患者做诊断时,有些检查需要耗费的时间很久,但仅仅凭借一些其他的症状,他就可以对病人患某种病有个大概的猜想,从而先做出一些措施来降低风险,毕竟等到疾病真正发生时可能会来不及。概率图模型便是能够同时进
- Python从入门到实战:超详细安装与使用秘籍
计算机学长
pythonpython开发语言
一、Python的神奇魅力在当今数字化的时代,Python无疑是编程语言中的璀璨明星,它以简洁、高效、易上手的特点,在众多领域中发挥着举足轻重的作用。在数据科学领域,Python已然成为了核心工具。从数据的收集、清洗,到深入的分析与可视化展示,Python都提供了完备的解决方案。Pandas库凭借其强大的数据处理和分析能力,能够轻松应对各种复杂的数据结构,让数据清洗和预处理变得高效而便捷;NumP
- 京东商品详情API数据清洗术:SKU反爬字段脱敏与结构化存储
Joanav+I7809804594
数据库python爬虫java大数据前端
一、京东商品详情API数据特性分析京东商品详情API返回的数据呈现典型的多源异构特征,其核心数据结构包含以下关键字段:基础信息:商品ID(SKU)、标题、价格、库存量、销量营销信息:促销标签(如"满减""赠品")、白条分期政策商家信息:店铺名称、评分、物流时效多媒体信息:主图URL、详情页图片组、视频链接以某款手机商品为例,其原始JSON数据片段如下:json{"sku_id":"10001234
- Jmeter使用过程中的一些总结
kanyun123
jmeter
以下总结使用的Jmeter版本为5.6.31、当把Jmeter语言转换为中文时,可能会出现jmeter日志不出现,当发现Jmeter不发送请求时,不显示日志,排查问题就会没有头绪,此时可以尝试将语言切换为英文,再尝试发现日志出现了。2、当你辛辛苦苦地的做完的稳定性测试,还没来得及截图,这个时候,你心血来潮想切换下语言,然后你面发现测好的数据都没了。3、有些数据使用csv或者jmeter的内置函数都
- 【excel入门学习】
秃顶少女
办公excel
excel学习excel学习快速填充/智能填充快速分析特殊格式的录入时间百分比分数身份证(过长数字的录入)原位填充从网上获取数据清洗数据自定义格式:数字格式代码数值占位符:0#?文本占位符:@组合设置0;-0;-;@日期格式设置:ymda颜色设置条件设置格式数据验证条件格式查找函数函数使用方法绝对引用与相对引用常用函数统计函数通配符求和排名vlookup函数查找替换分列一些小技巧自用!excel学
- 深度学习Day-38:Pytorch文本分类入门
Point__Nemo
深度学习自然语言处理人工智能
本文为:[365天深度学习训练营]中的学习记录博客原作者:[K同学啊|接辅导、项目定制]任务:了解文本分类的基本流程学习常用数据清洗方法学习如何使用jieba实现英文分词学习如何构建文本向量1.前期准备1.1环境安装pipinstalltorchvision==0.15.0pipinstalltorchaudio==2.0.1pipinstalltorch==2.0.01.2加载数据importt
- 解锁数据宝藏:数据挖掘之数据预处理全解析
奔跑吧邓邓子
必备核心技能数据挖掘数据预处理机器学习
目录一、引言:数据预处理——数据挖掘的基石二、数据预处理的重要性2.1现实数据的问题剖析2.2数据预处理的关键作用三、数据预处理的核心方法3.1数据清洗3.1.1缺失值处理3.1.2离群点处理3.1.3噪声处理3.2数据集成3.2.1实体识别3.2.2冗余处理3.2.3数据值冲突处理3.3数据变换3.3.1平滑处理3.3.2聚合操作3.3.3离散化3.3.4归一化四、数据预处理的实践流程4.1数据
- 【RAG优化】深度解析开源项目MinerU:从PDF解析到多模态理解的工业级解决方案
kakaZhui
pdf大模型LLMRAG文档解析
一、项目全景扫描MinerU(GitHub:opendatalab/MinerU)是由OpenDataLab团队开发的开源文档解析工具,其核心价值在于将复杂的PDF文档转化为结构化数据。项目始于大模型预训练数据清洗需求,现已成为支持多模态文档理解的工业级解决方案。最新发布的2.0版本(2025/06)在架构设计、性能指标和功能特性上实现全面升级,展现出三个显著特征:模块化架构:通过pipeline
- 分类树/装袋法/随机森林算法的R语言实现
廖致君
R
原文首发于简书于[2018.06.12]本文是我自己动手用R语言写的实现分类树的代码,以及在此基础上写的袋装法(bagging)和随机森林(randomforest)的算法实现。全文的结构是:分类树基本知识predginisplitrulesplitrule_bestsplitrule_randomsplittingbuildTreepredict装袋法与随机森林基本知识baggingpredic
- 二、【LLaMA-Factory实战】数据工程全流程:从格式规范到高质量数据集构建
陈奕昆
大模型微调教程llamapython前端人工智能大模型微调
一、引言在大模型微调中,数据质量直接决定模型性能。LLaMA-Factory提供了完整的数据工程工具链,支持从数据格式规范到清洗增强、注册验证的全流程管理。本文结合结构图、实战代码和生产级经验,带您掌握构建高质量数据集的核心技术。二、数据工程核心架构图原始数据数据格式规范Alpaca格式多模态格式自定义格式规范数据清洗增强相似度去重噪声过滤合成数据生成优质数据注册验证数据集注册格式校验质量评估训练
- Python 爬虫实战:英雄联盟赛事数据爬取(Scrapy+Playwright + 多源数据融合)
Python核芯
Python爬虫实战项目python爬虫scrapy
引言在电竞数据分析领域,英雄联盟(LeagueofLegends)赛事数据具有极高的商业价值。本文将通过一个完整的实战案例,演示如何使用Scrapy框架结合Playwright库,实现多源赛事数据的爬取与融合。项目涵盖动态渲染页面处理、分布式爬虫架构、数据清洗整合等核心技术点,最终构建一个可扩展的电竞数据采集平台。一、技术选型分析1.1为什么选择Scrapy+Playwright组合?Scrapy
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla