opencv+c++实现的瘦脸算法_VitowithoutHair的博客-CSDN博客关键思想是《Image Deformation Using Moving Least Squares》这篇论文中提到的方法。实现:1>实现人脸关键点定位2>实现论文中像素点的坐标变换坐标变换源码:void face_lift(Mat &src,const vector& landmarks,int change..._瘦脸算法https://blog.csdn.net/skyqsdyy/article/details/89467143?utm_medium=distribute.pc_relevant.none-task-blog-2~default~baidujs_baidulandingword~default-1-89467143-blog-130638921.235^v38^pc_relevant_default_base&spm=1001.2101.3001.4242.2&utm_relevant_index=4
Point2f Normalize(Point2f beign, Point2f end)
{
Point2f vector =beign - end;
float len = std::sqrt(vector.x * vector.x + vector.y * vector.y);
return Point2f(vector.x/ len,vector.y / len);
}
//@src:待检测图像
//@landmarks:基于src图像的68个dlib检测点
//@change:瘦脸效果(建议0-5就行,太大就成外星人了)
cv::Mat SkinnyFace_MLS(cv::Mat src, const std::vector landmarks, float change)
{
//控制点p
std::vector control_p = {
landmarks[0],//脸-开始
landmarks[3],
landmarks[7],
landmarks[10],
landmarks[13],
landmarks[16],//脸-结束
landmarks[33],//鼻子
landmarks[62]//下巴
};
//目的:以鼻子为中心,脸颊往里缩,同时下巴位置不变
//控制点q (p和q 一定要是一一对应)
std::vector control_q = {
landmarks[0],
Point2f(landmarks[3]+ Normalize(landmarks[33],landmarks[3]) *change),
Point2f(landmarks[7] + Normalize(landmarks[33],landmarks[7]) *change),
Point2f(landmarks[10] + Normalize(landmarks[33],landmarks[10]) *change),
Point2f(landmarks[13] + Normalize(landmarks[33],landmarks[13]) *change),
landmarks[16],
landmarks[33],
landmarks[62]
};
//变化后的
Mat dst = src.clone();
for (int i = 0; i < src.cols; i++)
{
for (int j =0; j< src.rows; j++)
{
//计算权重
std::vector weight_p;
std::vector::iterator itcp = control_p.begin();
while (itcp != control_p.end())
{
double tmp;
if (itcp->x != i || itcp->y != j)
tmp = 1 / ((itcp->x - i)*(itcp->x - i) + (itcp->y - j)*(itcp->y - j));
else
tmp = INT_MAX;
weight_p.push_back(tmp);
++itcp;
}
double px = 0, py = 0, qx = 0, qy = 0, tw = 0;
itcp = control_p.begin();
std::vector::iterator itwp = weight_p.begin();
std::vector::iterator itcq = control_q.begin();
while (itcp != control_p.end())
{
px += (*itwp)*(itcp->x);
py += (*itwp)*(itcp->y);
qx += (*itwp)*(itcq->x);
qy += (*itwp)*(itcq->y);
tw += *itwp;
++itcp;
++itcq;
++itwp;
}
px = px / tw;
py = py / tw;
qx = qx / tw;
qy = qy / tw;
Mat A = Mat::zeros(2, 1, CV_32FC1);
Mat B = Mat::zeros(1, 2, CV_32FC1);
Mat C = Mat::zeros(1, 2, CV_32FC1);
Mat sumL = Mat::zeros(2, 2, CV_32FC1);
Mat sumR = Mat::zeros(2, 2, CV_32FC1);
Mat M, pos;
for (int i = 0; i < weight_p.size(); ++i)
{
A.at(0, 0) = (control_p[i].x - px);
A.at(1, 0) = (control_p[i].y - py);
B.at(0, 0) = weight_p[i] * ((control_p[i].x - px));
B.at(0, 1) = weight_p[i] * ((control_p[i].y - py));
sumL += A * B;
C.at(0, 0) = weight_p[i] * (control_q[i].x - qx);
C.at(0, 1) = weight_p[i] * (control_q[i].y - qy);
sumR += A * C;
}
M = sumL.inv()*sumR;
B.at(0, 0) = i - px;
B.at(0, 1) = j - py;
C.at(0, 0) = qx;
C.at(0, 1) = qy;
pos = B * M + C;
int row = pos.at(0, 0);
int col = pos.at(0, 1);
//给新位置
dst.at(col, row)[0] = src.at(j, i)[0];
dst.at(col, row)[1] = src.at(j, i)[1];
dst.at(col, row)[2] = src.at(j, i)[2];
}
}
return dst;
}
1.能达到瘦脸效果
2.图片质量有所下降,痕迹很严重