ReentrantLock-jdk1.8

ReentrantLock分为公平锁和非公平锁,默认的为非公平锁

    public ReentrantLock() {
        sync = new NonfairSync();
    }

可以手动指定

   public ReentrantLock(boolean fair) {
       sync = fair ? new FairSync() : new NonfairSync();
   }
先从非公平锁讲起

1 lock

        final void lock() {
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }

首先尝试cas把state设置为1,如果成功则获取独占锁,失败执行acquire
2 acquire

  public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

2.1 tryAcquire

        protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }
        final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

先获取当前独占锁的数量:
1.如果为0,则cas获取锁,成功则获取独占锁。
2.如果不为0,则检查当前线程是否是重入锁,是就独占锁数量加一并返回。

2.2.1 addWaiter
如果tryAcquire都失败,那么就执行入队操作。

    private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        enq(node);
        return node;
    }

如果尾节点不为空,执行一次快速入队操作,如果cas成功,就入队成功。
尾节点为空或者快速入队不成功,for循环执行入队直到成功

    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

这里有个生成空节点的操作,因为在存在队列的情况下,队列头节点表示的是当前拥有锁的线程

2.2.1 acquireQueued
节点入队成功之后再执行线程挂起

    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

注意 p == head && tryAcquire(arg)这个条件是这个函数的唯一出口,先看线程挂起部分p == head && tryAcquire(arg)

    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

判断前置节点的状态,在这里分为三种情况:
1.Node.SIGNAL,可以唤醒后继节点,表示可以挂起单钱节点线程,所以直接返回
2.大于0,表示取消状态,则往前遍历删除节点直至非取消状态
3.如果不是前两者,将前置节点置为Node.SIGNAL

线程挂起

    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

2.3 selfInterrupt

    static void selfInterrupt() {
        Thread.currentThread().interrupt();
    }

这是一个比较细节的地方,结合挂起部分看。
线程挂起的方式是采用LockSupport.park,能够响应中断,但是不会抛异常。也就是说挂起的线程有可能被ReentrantLock之外的线程唤醒,这时候就需要重置中断状态,并且保证线程正确被唤醒并获取锁的时候,保持中断状态。

3 unlock
采用LockSupport.unpark唤醒队列下一个线程。

再来看公平锁

其实差别就两点:
1.没有直接cas获取锁的操作
2.在获取锁数量为0的时候,不再直接进行cas操作,要先判断下队列中是否还有节点未执行

        protected final boolean tryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
    }

你可能感兴趣的:(ReentrantLock-jdk1.8)