知识库读取Word内容时,由于embedding切片操作,可能会出现表格被分割成多个切片的情况。这种切片方式可能导致“列名栏”和“内容栏”之间的Y轴关系链断裂,从而无法准确地确定每一列的数据对应关系,从而使得无法准确知道每一列的数据汇总。
用下面表格为例子:
级数 |
T1 |
T2 |
T3 |
T4 |
T5 |
T6 |
T7 |
子等 |
T1.1-1.2 |
T2.1-2.2 |
T3.1-3.3 |
T4.1-4.3 |
T5.1-5.2 |
T6.1-6.2 |
T7 |
专业名称 |
实习 工程师 |
助理 工程师 |
工程师 |
高级 工程师 |
资深 工程师 |
专家级 工程师 |
首席 工程师 |
学历 |
本科及以上 |
本科及以上 |
本科及以上 |
本科及以上 |
本科及以上 |
硕士及以上 |
硕士及以上 |
工作经验 |
1年以内(兼职) |
1-3年 |
3-5年 |
5-8年 |
8-10年 |
10-15年 |
15年以上 |
级数 |
T1 |
T2 |
T3 |
T4 |
T5 |
T6 |
T7 |
子等 |
T1.1-1.2 |
T2.1-2.2 |
T3.1-3.3 |
T4.1-4.3 |
T5.1-5.2 |
T6.1-T6.2 |
T7 |
专业名称 |
实习 工程师 |
助理 工程师 |
工程师 |
高级 工程师 |
资深 工程师 |
专家级 工程师 |
首席 工程师 |
分值 |
60-64分 |
65-69分 |
70-79分 |
80-89分 |
90-94分 |
95-97分 |
98-100分 |
直接演示一下本文代码运行的对比结果,分别展示“无优化”和“有优化”的问答结果,标绿框的是回答错误的:
本文帮助提高文本处理和向量化的效率,以下是对每个步骤的详细说明,详见md_embedding.py源码:
这种方法的优点是能够有效地分离文字和表格,并通过切片和向量化处理提高处理效率。通过将表格转化为向量表示,可以更方便地进行后续的计算和分析。同时,由于切片时保证了表格的完整性,可以避免表格被切断导致信息丢失的问题。
有优化的embedding的源码, md_embedding.py 如下:
import os
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import DirectoryLoader
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredWordDocumentLoader
from docx import Document
def convert_word_tables_to_markdown(file_path, output_folder):
def convert_table_to_markdown(table):
markdown = ""
for row in table.rows:
cells = [cell.text.replace('\n', '').replace('|', '|') for cell in row.cells]
markdown += "|".join(cells) + "|\n"
return markdown
doc = Document(file_path)
# 创建输出文件夹(如果不存在)
os.makedirs(output_folder, exist_ok=True)
# 将每个表格转换为Markdown并保存为单独的TXT文件
for i, table in enumerate(doc.tables):
markdown = convert_table_to_markdown(table)
filename_without_ext=os.path.splitext(os.path.basename(file_path))[0]
# 将Markdown表格写入TXT文件
output_file_path = os.path.join(output_folder, filename_without_ext+f"_output_{i+1}.md")
with open(output_file_path, "w", encoding='utf-8') as file:
file.write(markdown)
return output_folder
def remove_tables_save_as_md(file_path, output_file_path):
doc = Document(file_path)
# 移除所有表格
for table in doc.tables:
table._element.getparent().remove(table._element)
# 获取剩余内容的纯文本,并构建Markdown格式字符串
content = [p.text.strip() for p in doc.paragraphs if p.text.strip()]
markdown_content = '\n\n'.join(content)
# 保存为MD文件
with open(output_file_path, 'w', encoding='utf-8') as file:
file.write(markdown_content)
return output_file_path
abs_docx_path='D:\CloudDisk\OpenAI\博客的源码\Docx表格优化\带表格DOCX.docx'
embedding_folder_path=os.path.dirname(abs_docx_path)+'\\md_txt'
os.makedirs(embedding_folder_path,exist_ok=True)
convert_word_tables_to_markdown(abs_docx_path,embedding_folder_path)
remove_tables_save_as_md(abs_docx_path,embedding_folder_path+'\\'+os.path.basename(abs_docx_path)+'.md')
# 1 定义embedding
embeddings = OpenAIEmbeddings(openai_api_key='aaaaaaaaaaaaaaaaaa',
openai_api_base='bbbbbbbbbbbbbbbbbbbbbbbbbb',
openai_api_type='azure',
model="text-embedding-ada-002",
deployment="lk-text-embedding-ada-002",
chunk_size=1)
# 2 定义文件
loader = DirectoryLoader(embedding_folder_path, glob="**/*.md")
pages = loader.load_and_split()
# 按固定尺寸切分段落
text_splitter_RCTS = RecursiveCharacterTextSplitter(
chunk_size = 500,
chunk_overlap = 100
)
split_docs_RCTS = text_splitter_RCTS.split_documents(pages)
for item in split_docs_RCTS:
print(item)
print('')
#写入向量数据库
print(f'写入RCTS向量数据库')
vectordb = Chroma.from_documents(split_docs_RCTS, embedding=embeddings, persist_directory="./MD_RCTS/")
vectordb.persist()
无优化的embedding的源码,docx_embedding.py 如下:
import os
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.document_loaders import UnstructuredWordDocumentLoader
# 1 定义embedding
embeddings = OpenAIEmbeddings(openai_api_key='aaaaaaaaaa',
openai_api_base='bbbbbbbbbbb',
openai_api_type='azure',
model="text-embedding-ada-002",
deployment="lk-text-embedding-ada-002",
chunk_size=1)
docx_file_path="D:\CloudDisk\OpenAI\博客的源码\Docx表格优化\带表格DOCX.docx"
# 2 定义文件
loader = UnstructuredWordDocumentLoader(docx_file_path)
pages = loader.load_and_split()
# 按固定尺寸切分段落
text_splitter_RCTS = RecursiveCharacterTextSplitter(
chunk_size = 500,
chunk_overlap = 100
)
split_docs_RCTS = text_splitter_RCTS.split_documents(pages)
for item in split_docs_RCTS:
print(item)
print('')
#写入向量数据库
print(f'写入RCTS向量数据库')
vectordb = Chroma.from_documents(split_docs_RCTS, embedding=embeddings, persist_directory="./Word_RCTS/")
vectordb.persist()
问答测试 chat_qa.py:
import time
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain.chat_models import AzureChatOpenAI
def getQuestionList():
question_list=[
'级数=T6,专业名称是?',
'要求硕士学历有哪些级数?',
'分值大于等于70是哪些级数?',
'可以兼职的是什么级数?',
'需要工作经验满5年以上是哪些专业?',
'首席工程师要求什么学历,工作经验多少年',
'自上而下的原则,是指?',
'现场答辩,是指?',
'级数=T3,专业名称是?',
'级数=T4,专业名称是?',
]
return question_list
embeddings = OpenAIEmbeddings(openai_api_key='aaaaaaaaaaaaaaaaa',
openai_api_base='bbbbbbbbbbbbbbbbbbbbbbb',
openai_api_type='azure',
model="text-embedding-ada-002",
deployment="lk-text-embedding-ada-002",
chunk_size=1)
openAiLLm = AzureChatOpenAI(openai_api_key='aaaaaaaaaaaaaaaaaaaaaaaaaaaa', #注意这里,不同 API_BASE 使用不同 APK_KEY
openai_api_base="bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb",
openai_api_version='2023-03-15-preview',
deployment_name='lk-gpt-35-turbo-16k',
temperature=0.9,
model_name="gpt-35-turbo-16k",
max_tokens=300)
print('------r---r---r----')
word_RTCS = Chroma(persist_directory="./Word_RCTS/", embedding_function=embeddings)
word_qa = RetrievalQA.from_chain_type(llm=openAiLLm,chain_type="stuff",retriever=word_RTCS.as_retriever(),return_source_documents = False)
md_RTCS = Chroma(persist_directory="./MD_RCTS/", embedding_function=embeddings)
md_qa = RetrievalQA.from_chain_type(llm=openAiLLm,chain_type="stuff",retriever=md_RTCS.as_retriever(),return_source_documents = False)
#print(qa_RTCS)#查看自定义Prompt的结构体内容
for i in range(0,len(getQuestionList())):
question_text=getQuestionList()[i]
# 进行问答
wordchat = word_qa({"query": question_text})
wordquery = str(wordchat['query'])
wordresult = str(wordchat['result'])
print("问题: ",wordquery)
print("无优化-结果:",wordresult)
time.sleep(1)#每次提问间隔1s
csvchat = md_qa({"query": question_text})
csvquery = str(csvchat['query'])
csvresult = str(csvchat['result'])
#print("MD问题: ",csvquery)
print("有优化-结果:",csvresult)
print('----------------------------------------')
time.sleep(1)#每次提问间隔1s