Spring源码解析之循环依赖

什么是循环依赖

简单的说就是A依赖B,B依赖C,C依赖A这样就构成了循环依赖


循环依赖

循环依赖分为构造器依赖和属性依赖,众所周知的是Spring能够解决属性的循环依赖(set注入)。下文将从源码角度分析Spring是如何解决属性的循环依赖。

如下配置会产生循环依赖



    
        
    
    
        
    

    @Test
    public void testAbc() throws IOException {
        BeanFactory bf = new XmlBeanFactory(new ClassPathResource("applicationContext.xml"));
        //获取bean的时候就会涉及到循环依赖的处理
        Person person = (Person) bf.getBean("person");
        person.say();
    }

我们跟进源码可以看到如下代码

protected  T doGetBean(
            String name, @Nullable Class requiredType, @Nullable Object[] args, boolean typeCheckOnly)
            throws BeansException {
        //修正名称
        String beanName = transformedBeanName(name);
        Object bean;

        // Eagerly check singleton cache for manually registered singletons.
        //从单例缓存中获取bean,这里就涉及到spring的1,2,3级缓存,第一次获取的时候sharedInstance 肯定为空
        Object sharedInstance = getSingleton(beanName);
        if (sharedInstance != null && args == null) {
            if (logger.isTraceEnabled()) {
                if (isSingletonCurrentlyInCreation(beanName)) {
                    logger.trace("Returning eagerly cached instance of singleton bean '" + beanName +
                            "' that is not fully initialized yet - a consequence of a circular reference");
                }
                else {
                    logger.trace("Returning cached instance of singleton bean '" + beanName + "'");
                }
            }
            bean = getObjectForBeanInstance(sharedInstance, name, beanName, null);
        }

        else {
            // Fail if we're already creating this bean instance:
            // We're assumably within a circular reference.
            // 对于scope==prototype的,如果出现循环依赖,则直接抛异常,无法处理
            if (isPrototypeCurrentlyInCreation(beanName)) {
                throw new BeanCurrentlyInCreationException(beanName);
            }

            ......
            if (!typeCheckOnly) {
                //标记当前bean正在创建,就是将当前的beanName放到Set集合中,后面会作为其中一个判断条件去判断是否去从1或者2或者3级缓存中获取bean
                markBeanAsCreated(beanName);
            }

            try {
                ......
                // Create bean instance.
                //创建bean实力的逻辑,
                if (mbd.isSingleton()) {
//获取beanName的实力
                    sharedInstance = getSingleton(beanName, () -> {
                        try {
                            return createBean(beanName, mbd, args);
                        }
                        catch (BeansException ex) {
                            ......
                        }
                    });
                    bean = getObjectForBeanInstance(sharedInstance, name, beanName, mbd);
                }
        ......
        return (T) bean;

查看public Object getSingleton(String beanName, ObjectFactory singletonFactory)如下

public Object getSingleton(String beanName, ObjectFactory singletonFactory) {
        
        synchronized (this.singletonObjects) {
            //从一级缓存中获取bean
            Object singletonObject = this.singletonObjects.get(beanName);
            if (singletonObject == null) {
                ...
                try {
                    /**
                     * 这里singletonFactory.getObject()实际是上一步中的匿名内部类的方法,即try中的语句块
                     * sharedInstance = getSingleton(beanName, () -> {
                     *                      try {
                     *                          return createBean(beanName, mbd, args);
                     *                   }...)
                     */
                    singletonObject = singletonFactory.getObject();
                    newSingleton = true;
                }
                ...
            return singletonObject;
        }
    }

我们可以继续返回上一步中继续查看return createBean(beanName, mbd, args);逻辑

protected Object createBean(String beanName, RootBeanDefinition mbd, @Nullable Object[] args)
            throws BeanCreationException {

        ...
        try {
            //这里是真正创建bean的逻辑,真正处理的逻辑一般都是doXXXX,do开头的
            Object beanInstance = doCreateBean(beanName, mbdToUse, args);
            if (logger.isTraceEnabled()) {
                logger.trace("Finished creating instance of bean '" + beanName + "'");
            }
            return beanInstance;
        }
        ...
    }

继续查看doCreateBean()逻辑
这一步第一次将A放入了三级缓存,这个时候A实例化,但是未初始化。

protected Object doCreateBean(String beanName, RootBeanDefinition mbd, @Nullable Object[] args)
            throws BeanCreationException {

        // Instantiate the bean.
        BeanWrapper instanceWrapper = null;
        if (mbd.isSingleton()) {
            instanceWrapper = this.factoryBeanInstanceCache.remove(beanName);
        }
        if (instanceWrapper == null) {
            //这里最终会使用jdk的类加载器去去实例化当前bean,仅仅只是newInstance,
            instanceWrapper = createBeanInstance(beanName, mbd, args);
        }
        Object bean = instanceWrapper.getWrappedInstance();
        Class beanType = instanceWrapper.getWrappedClass();
       // ......
        // Eagerly cache singletons to be able to resolve circular references
        // even when triggered by lifecycle interfaces like BeanFactoryAware.
        //缓存单例用于接续循环依赖,
        //(单例 && 允许循环依赖(此处是恒定值,但是可以利用别的BeanFactory实现去改写这个值) && 当前bean是否处于正在创建中)
        //这里为true,进入if,
        boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences &&
                isSingletonCurrentlyInCreation(beanName));
        if (earlySingletonExposure) {
            if (logger.isTraceEnabled()) {
                logger.trace("Eagerly caching bean '" + beanName +
                        "' to allow for resolving potential circular references");
            }
            //添加到三级缓存,但是这时候bean还未实例化,下次别的Bean依赖的时候在调用真正的逻辑(匿名内部类)
            //这里的匿名内部类意思是: 提前将实例化的bean暴露出去,记住,仅仅是实例化,没有初始化
            addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean));
        }

        // Initialize the bean instance.
        Object exposedObject = bean;
        try {
            //填充属性,这个时候发现属性A类中的B属性未实例化,则实例化B,实例化B之后,则把把B的属性填充给A,这个时候填充
            //的时候回从三级缓存中获取Bean
            populateBean(beanName, mbd, instanceWrapper);
            exposedObject = initializeBean(beanName, exposedObject, mbd);
        }
            //......
        return exposedObject;
    }

继续查看填充属性的逻辑AbstractAutowireCapableBeanFactory.java

protected void populateBean(String beanName, RootBeanDefinition mbd, @Nullable BeanWrapper bw) {
        //......
        //这里去发现当前bean需要填充的属性,也就是需要依赖的对象属性,这个时候如果pvc肯定不为空,继续进入下面if语句
        PropertyValues pvs = (mbd.hasPropertyValues() ? mbd.getPropertyValues() : null);
              //......
        if (pvs != null) {
            //将依赖的属性赋值到当前bean中
            applyPropertyValues(beanName, mbd, bw, pvs);
        }
    }

查看applyPropertyValues
AbstractAutowireCapableBeanFactory.java

protected void applyPropertyValues(String beanName, BeanDefinition mbd, BeanWrapper bw, PropertyValues pvs) {
        if (pvs.isEmpty()) {
            return;
        }

        if (System.getSecurityManager() != null && bw instanceof BeanWrapperImpl) {
            ((BeanWrapperImpl) bw).setSecurityContext(getAccessControlContext());
        }

        MutablePropertyValues mpvs = null;
        List original;

        if (pvs instanceof MutablePropertyValues) {
            mpvs = (MutablePropertyValues) pvs;
            if (mpvs.isConverted()) {
                // Shortcut: use the pre-converted values as-is.
                try {
                    bw.setPropertyValues(mpvs);
                    return;
                }
                catch (BeansException ex) {
                    throw new BeanCreationException(
                            mbd.getResourceDescription(), beanName, "Error setting property values", ex);
                }
            }
            //获取需要填充的属性名称s
            original = mpvs.getPropertyValueList();
        }
        else {
            original = Arrays.asList(pvs.getPropertyValues());
        }

        TypeConverter converter = getCustomTypeConverter();
        if (converter == null) {
            converter = bw;
        }
        BeanDefinitionValueResolver valueResolver = new BeanDefinitionValueResolver(this, beanName, mbd, converter);

        // Create a deep copy, resolving any references for values.
        List deepCopy = new ArrayList<>(original.size());
        boolean resolveNecessary = false;

        //循环去填充所有的属性值
        for (PropertyValue pv : original) {
            if (pv.isConverted()) {
                deepCopy.add(pv);
            }
            else {
                //依赖的属性名称
                String propertyName = pv.getName();
                //依赖的属性值,第一次这个值的类型是 RuntimeBeanReference
                Object originalValue = pv.getValue();
                //解析属性,里面的逻辑会进入RuntimeBeanReference判断逻辑,进行属性的解析
                Object resolvedValue = valueResolver.resolveValueIfNecessary(pv, originalValue);
                Object convertedValue = resolvedValue;
                boolean convertible = bw.isWritableProperty(propertyName) &&
                        !PropertyAccessorUtils.isNestedOrIndexedProperty(propertyName);
                if (convertible) {
                    convertedValue = convertForProperty(resolvedValue, propertyName, bw, converter);
                }
                // Possibly store converted value in merged bean definition,
                // in order to avoid re-conversion for every created bean instance.
                if (resolvedValue == originalValue) {
                    if (convertible) {
                        pv.setConvertedValue(convertedValue);
                    }
                    deepCopy.add(pv);
                }
                else if (convertible && originalValue instanceof TypedStringValue &&
                        !((TypedStringValue) originalValue).isDynamic() &&
                        !(convertedValue instanceof Collection || ObjectUtils.isArray(convertedValue))) {
                    pv.setConvertedValue(convertedValue);
                    deepCopy.add(pv);
                }
                else {
                    resolveNecessary = true;
                    deepCopy.add(new PropertyValue(pv, convertedValue));
                }
            }
        }
        if (mpvs != null && !resolveNecessary) {
            mpvs.setConverted();
        }

        // Set our (possibly massaged) deep copy.
        try {
            bw.setPropertyValues(new MutablePropertyValues(deepCopy));
        }
        catch (BeansException ex) {
            throw new BeanCreationException(
                    mbd.getResourceDescription(), beanName, "Error setting property values", ex);
        }
    }

继续查看valueResolver.resolveValueIfNecessary()

@Nullable
    public Object resolveValueIfNecessary(Object argName, @Nullable Object value) {
        // We must check each value to see whether it requires a runtime reference
        // to another bean to be resolved.
        //上一步说的那个属性值是RuntimeBeanReference,这里判断一下为true,那就继续解析属性
        if (value instanceof RuntimeBeanReference) {
            RuntimeBeanReference ref = (RuntimeBeanReference) value;
            //继续解析依赖的属性。
            return resolveReference(argName, ref);
        }
         //...

继续查看resolveReference()方法可以看到准备在factory中解析依赖的bean

/**
     * Resolve a reference to another bean in the factory.
     * 在factory中解析对另一个bean的引用
     */
    @Nullable
    private Object resolveReference(Object argName, RuntimeBeanReference ref) {
        try {
            //...
            }
            else {
                //这里会从factory中获取引用的bean,第一次循环完毕。里面会重头进入doGetBean()相关方法,然后一步步会获取引用的bean.
                bean = this.beanFactory.getBean(refName);
                this.beanFactory.registerDependentBean(refName, this.beanName);
            }
            //...
            return bean;
        }
        //...
    }

至此在初始化A的时候(只是实例化为初始化)的过程中,发现需要依赖B,那么这个时候再去factory中去找B,接下来我们发现B走了同样的流程,然后继续初始化A,此时状态如下:


image.png

程序实例化好所有的bean之后,第二轮开始进行依赖bean的set值,我们会看到刚开头的代码

protected  T doGetBean(
            String name, @Nullable Class requiredType, @Nullable Object[] args, boolean typeCheckOnly)
            throws BeansException {
        //修正名称
        String beanName = transformedBeanName(name);
        Object bean;

        // Eagerly check singleton cache for manually registered singletons.
        //从单例缓存中获取bean,这里就涉及到spring的1,2,3级缓存
        Object sharedInstance = getSingleton(beanName);
        //...

继续查看getSingleton(beanName);

@Nullable
    protected Object getSingleton(String beanName, boolean allowEarlyReference) {
        Object singletonObject = this.singletonObjects.get(beanName);
        //第二轮进入的时候isSingletonCurrentlyInCreation(beanName)为true,进入if,每一次第一次初始化的bean的时候,都会
        //标识此bean正在创建中。
        if (singletonObject == null && isSingletonCurrentlyInCreation(beanName)) {
            synchronized (this.singletonObjects) {
                //从二级缓存获取,此时为null,allowEarlyReference默认一直true
                singletonObject = this.earlySingletonObjects.get(beanName);
                if (singletonObject == null && allowEarlyReference) {
                    //从3级缓存获取之前存储的匿名内部类
                    ObjectFactory singletonFactory = this.singletonFactories.get(beanName);
                    if (singletonFactory != null) {
                        //调用匿名内部类的方法去执行doCreateBean的创建
                        singletonObject = singletonFactory.getObject();
                        //将当前实例化好,但是未初始化的A放入二级缓存
                        this.earlySingletonObjects.put(beanName, singletonObject);
                        //把当前在三级缓存中存放的beanName移除掉
                        this.singletonFactories.remove(beanName);
                    }
                }
            }
        }
        return singletonObject;
    }

此时A,B在缓存中的状态为:


image.png

接着会将这个A会暴露出去,让B去完成A属性的赋值,这个时候我们可以继续查看初始化B的阶段中给A属性赋值的逻辑

@Nullable
    private Object resolveReference(Object argName, RuntimeBeanReference ref) {
        try {
                    //...
            else {
                //这个时候从factory中拿到了已经实例化好的A
                bean = this.beanFactory.getBean(refName);
                this.beanFactory.registerDependentBean(refName, this.beanName);
            }
            
            return bean;
        //...
    }

赋值操作

protected void applyPropertyValues(String beanName, BeanDefinition mbd, BeanWrapper bw, PropertyValues pvs) {
        //...
        //循环去填充所有的属性值
        for (PropertyValue pv : original) {
            //...
            else {
                //依赖的属性名称
                String propertyName = pv.getName();
                //依赖的属性值,第一次这个值的类型是 RuntimeBeanReference
                Object originalValue = pv.getValue();
                //解析属性,里面的逻辑会进入RuntimeBeanReference判断逻辑,进行属性的解析
                //这个时候已经解析到A属性的Bean了,接下来就是把A 赋值给B bean即可完成B的实例化初始化
                Object resolvedValue = valueResolver.resolveValueIfNecessary(pv, originalValue);
                Object convertedValue = resolvedValue;
                //...
                if (resolvedValue == originalValue) {
                    if (convertible) {
                        pv.setConvertedValue(convertedValue);
                    }
                    deepCopy.add(pv);
                }
                else if (convertible && originalValue instanceof TypedStringValue &&
                        !((TypedStringValue) originalValue).isDynamic() &&
                        !(convertedValue instanceof Collection || ObjectUtils.isArray(convertedValue))) {
                    pv.setConvertedValue(convertedValue);
                    deepCopy.add(pv);
                }
                else {
                    resolveNecessary = true;
                    deepCopy.add(new PropertyValue(pv, convertedValue));
                }
            }
        }
        //...
        // Set our (possibly massaged) deep copy.
        try {
            //这里就是赋值操作
            bw.setPropertyValues(new MutablePropertyValues(deepCopy));
        }
//...
    }

一步步往下跟,我们可以看到如下代码

protected void addSingleton(String beanName, Object singletonObject) {
        synchronized (this.singletonObjects) {
            //将B放入一级缓存
            this.singletonObjects.put(beanName, singletonObject);
            //将B从三级缓存移除
            this.singletonFactories.remove(beanName);
            this.earlySingletonObjects.remove(beanName);
            this.registeredSingletons.add(beanName);
        }
    }

此时A,B在1,2,3级缓存中的状态如下:


image.png

此时B已经完全的实例化并初始化完毕,可以正常的使用了。接下来就是继续完成A中B属性的赋值即可
剩下的逻辑我就不分析了。
A,B在1,2,3级缓存中的状态变化如下:


spring 三级缓存解决循环依赖状态图.png

至此spring如何解决循环依赖已经分析完毕。但是我们需要思考以下几个问题

只有一级缓存能否解决循环依赖?

只有一级是解决不了的,一级缓冲中到时候存放的bean你是不知道到底是不是初始化完毕的。

只有二级能否解决循环依赖?

参考文章:https://www.bilibili.com/read/cv6674250

你可能感兴趣的:(Spring源码解析之循环依赖)