Python数据可视化工具——Pyecharts

目录

  • 1 简介
    • 绘图前先导包
  • 2 折线图
  • 3 饼图
  • 4 柱状图/条形图
  • 5 散点图
  • 6 箱线图
  • 7 热力图
  • 8 漏斗图
  • 9 3D柱状图
  • 10 其他:配置项

1 简介

Pyecharts是一款将python与echarts结合的强大的数据可视化工具
Pyecharts是一个用于生成echarts图表的类库。echarts是百度开源的一个数据可视化JS库,主要用于数据可视化。Pyecharts是Echarts与Python的结合
官网:https://pyecharts.org/#/zh-cn/intro
使用Pyecharts绘图时,建议直接从官网将相关demo复制下来,更换成自己的数据。若是想要进行修改,参考全局配置项以及系列配置项进行修改。

绘图前先导包

from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.globals import ThemeType
若上述代码执行不成功,请安装pyecharts1.7.1版本的包
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts==1.7.1

下面是部分图形的基础展示

2 折线图

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker

c = (
    Line()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"))
    .render("line_base.html")
)

Python数据可视化工具——Pyecharts_第1张图片

3 饼图

from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker

c = (
    Pie()
    .add("", [list(z) for z in zip(Faker.choose(), Faker.values())])
    .set_global_opts(title_opts=opts.TitleOpts(title="Pie-基本示例"))
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    .render("pie_base.html")
)

Python数据可视化工具——Pyecharts_第2张图片

4 柱状图/条形图

案例一

from pyecharts.charts import Bar
b = Bar(init_opts = opts.InitOpts(theme = ThemeType.WHITE,width = '620px',height = '420px')) #初始化
b.add_xaxis(['小米','红米','三星','华为'])  #添加x轴数据,列表形式
b.add_yaxis('商家',[234,353,211,342])
b.set_global_opts(title_opts = opts.TitleOpts(title = '手机数据',subtitle = '数量'))
b.render('手机数据.html')
b.render_notebook()  #实时显示

Python数据可视化工具——Pyecharts_第3张图片

案例二

#可缩放的柱状图,适合数据量大,还要求可以细看的企业
x= ['小米','红米','三星','华为']
y = [234,353,211,342]
c = (
    Bar()
    .add_xaxis(x)
    .add_yaxis("商家A", y, color='#42a5f5') #color填充16进制的数据
    .set_global_opts(
        title_opts=opts.TitleOpts(title="手机"),
        datazoom_opts=opts.DataZoomOpts(type_="inside"),
    )
    .render("手机.html")
)

若想要在notebook中显示,需要修改上述代码,换成案例一,b.render_notebook的方式
Python数据可视化工具——Pyecharts_第4张图片

5 散点图

from pyecharts import options as opts
from pyecharts.charts import Scatter
a = ['河马', '蟒蛇', '老虎', '大象', '兔子', '熊猫', '狮子']
b =[59, 94, 80, 145, 102, 67, 31]
c = (
    Scatter()
    .add_xaxis(a)
    .add_yaxis("商家A", b)
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Scatter-显示分割线"),
        xaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)),
        yaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)),
    )
    .render("scatter_splitline.html")
)

Python数据可视化工具——Pyecharts_第5张图片

6 箱线图

from pyecharts import options as opts
from pyecharts.charts import Boxplot

v1 = [
    [850, 740, 900, 1070, 930, 850, 950, 980, 980, 880, 1000, 980]
]
c = Boxplot()
c.add_xaxis(["expr1"])
c.add_yaxis("A", c.prepare_data(v1))
c.set_global_opts(title_opts=opts.TitleOpts(title="BoxPlot-基本示例"))
c.render("boxplot_base.html")

Python数据可视化工具——Pyecharts_第6张图片

7 热力图

import random

from pyecharts import options as opts
from pyecharts.charts import HeatMap
from pyecharts.faker import Faker

value = [[i, j, random.randint(0, 50)] for i in range(24) for j in range(7)]
h = HeatMap()
h.add_xaxis(Faker.clock)
h.add_yaxis(
        "series0", Faker.week, value, label_opts=opts.LabelOpts(position="middle")
    )
h.set_global_opts(
        title_opts=opts.TitleOpts(title="HeatMap-基本示例"),
        visualmap_opts=opts.VisualMapOpts(),
    )
h.render("heatmap_base.html")

Python数据可视化工具——Pyecharts_第7张图片

8 漏斗图

from pyecharts import options as opts
from pyecharts.charts import Funnel

list_a = [['曝光', 178],
 ['浏览', 150],
 ['点击', 106],
 ['收藏', 46],
 ['购买', 15]]

c = (
    Funnel()
    .add("商品", list_a)
    .set_global_opts(title_opts=opts.TitleOpts(title="Funnel-基本示例"))
    .render("funnel_base.html")
)

Python数据可视化工具——Pyecharts_第8张图片

9 3D柱状图

import random

from pyecharts import options as opts
from pyecharts.charts import Bar3D
from pyecharts.faker import Faker


data = [(i, j, random.randint(0, 12)) for i in range(6) for j in range(24)]
c = (
    Bar3D()
    .add(
        "",
        [[d[1], d[0], d[2]] for d in data],
        xaxis3d_opts=opts.Axis3DOpts(Faker.clock, type_="category"),
        yaxis3d_opts=opts.Axis3DOpts(Faker.week_en, type_="category"),
        zaxis3d_opts=opts.Axis3DOpts(type_="value"),
    )
    .set_global_opts(
        visualmap_opts=opts.VisualMapOpts(max_=20),
        title_opts=opts.TitleOpts(title="Bar3D-基本示例"),
    )
    .render("bar3d_base.html")
)

Python数据可视化工具——Pyecharts_第9张图片

10 其他:配置项

若想要修改标题的一些样式,可以通过:配置项——全局配置项——TitleOpts:标题配置项,若发现还有其他参数,则需要找相关的系列配置项,从而进行修改
Python数据可视化工具——Pyecharts_第10张图片
Python数据可视化工具——Pyecharts_第11张图片

例子:若是想要修改标题文本颜色,可以这样修改

#opts.TitleOpts进行添加
opts.TitleOpts(title="手机",title_textstyle_opts = opts.TextStyleOpts(color = 'pink'))

Python数据可视化工具——Pyecharts_第12张图片

Python数据可视化工具——Pyecharts_第13张图片

你可能感兴趣的:(python可视化,信息可视化,python,开发语言)