STL 关于vector的细节,vector模拟实现【C++】

文章目录

  • vector成员变量
  • 默认成员函数
    • 构造函数
    • 拷贝构造
    • 赋值运算符重载函数
    • 析构函数
  • 迭代器
    • begin
    • end
  • size和capacity
  • resize
  • reserve
  • [ ]
  • push_back
  • pop_back
  • insert
  • erase
  • swap

vector成员变量

STL 关于vector的细节,vector模拟实现【C++】_第1张图片
_start指向容器的头,_finish指向容器当中有效数据的下一个位置,_endofstorage指向整个容器的尾

默认成员函数

构造函数

		//构造函数
		vector()
			:_start(nullptr)
			, _finish(nullptr)
			, _endofstorage(nullptr)
		{}

拷贝构造

先开辟一块与该容器大小相同的空间,然后将该容器当中的数据一个个拷贝过来即可,最后更新_finish和_endofstorage的值即可。

深拷贝版本一:

		//拷贝构造(深拷贝)
		vector(const vector<T> & v)
			//v1= v
			//vector( vector * this ,const vector& v)

		{
			//开空间
			this->_start =  new T[size(T) * v.capacity()];
			//拷贝数据
			memcpy(this->_start, v._start, sizeof(T) * v.size()  );
			this->_finish = v._start + v.size();//更新_finish
			this->_endofstorage = v._start + v.capacity();//更新 _endofstorage
		}

注意: 不能使用memcpy函数
如果vector存储的数据是内置类型或无需进行深拷贝的自定义类型时,使用memcpy函数可以
但当vector存储的数据是需要进行深拷贝的自定义类型时,不能使用memcpy
举个例子
如果vector存储的数据是string类的时候

void test_vector9()
	{
		vector<string> v;
		v.push_back("111111111111111");
		v.push_back("222222222222222");
		v.push_back("333333333333333");
		v.push_back("444444444444444");
		v.push_back("555555555555555");//memcpy拷贝出现了问题

		for (auto & e : v) //string拷贝代价比较大
		{
			cout << e << " ";
		}
		cout << endl;
	}

memcpy函数进行拷贝构造的话,那么reserve函数申请的tmp当中存储的每个string的成员变量的值,与vector 当中的每个对应的string成员都指向同一个字符串空间,
STL 关于vector的细节,vector模拟实现【C++】_第2张图片

delete释放空间 ,如果是自定义类型时,依次调用数组每个对象的析构函数,再释放整个空间,也就是说tmp现在指向一块被释放的空间,即tmp是野指针
STL 关于vector的细节,vector模拟实现【C++】_第3张图片

总结:
问题:vector是深拷贝 , 但是vector空间上存的对象是string的数组使用memcpy导致string对象的浅拷贝

如何解决:

		void reserve( size_t n)
		{
 			if (n > capacity())//扩容 
			{
				size_t sz = size();//用sz记录size 
				T * tmp = new T[n];
				if (_start != nullptr) //如果原空间不为空再拷贝数据
				{
					//memcpy(tmp, _start, sizeof(T) * sz);//将_start的数据拷贝到tmp中
					for (size_t i = 0; i < sz; ++i)
					{
						tmp[i] = _start[i];//调用string的赋值重载进行深拷贝
					}
					delete[] _start;//释放_start的空间 
				}

				_start = tmp; //将tmp的地址给_start,以便_finish和_endofstorage的更新
				_finish = _start + sz;//更新_finish
				_endofstorage = _start + n;//更新_endofstorage 

			  } 
		}

STL 关于vector的细节,vector模拟实现【C++】_第4张图片

结论: 如果vector当中存储的元素类型是内置类型(int)或浅拷贝的自定义类型(Date),可以使用memcpy函数进行进行拷贝构造,但如果vector当中存储的元素类型是深拷贝的自定义类型(string),则不可以使用memcpy函数

深拷贝版本二:

使用范围for(或是其他遍历方式)对容器v进行遍历,在遍历过程中将容器v中存储的数据一个个尾插过来即可。

		//拷贝构造第二种版本(深拷贝)
		vector( const vector<T>& v)
			//v1=v
			//vector( vector *this , const vector v)
			:_start(nullptr)
			, _finish(nullptr)
			, _endofstorage(nullptr)
		{
			//开空间
			reserve(v.capacity());

			//拷贝数据
			for (auto e : v)
			{
				push_back(e); //将v的数据插入到v1中
			}
		}

注意: 在使用范围for对容器v进行遍历的过程中,变量e就是每一个数据的拷贝,然后将e尾插到构造出来的容器当中。就算容器v当中存储的数据是string类,在e拷贝时也会自动调用string的拷贝构造(深拷贝),所以也能够避免出现与使用memcpy时类似的问题。

赋值运算符重载函数

vector的赋值运算符重载当然也涉及深拷贝问题,我们这里也提供两种深拷贝的写法:

先释放原来的空间,再开辟一块和容器v大小相同的空间,然后将容器v当中的数据一个个拷贝过来,最后更新_finish和_endofstorage的值即可。

深拷贝版本一

		//赋值重载版本一
		vector<T>  &  operator=(vector<T> v)
			//v1=v
		//	vector& operator=(vector *this , vector v)
		{
			//释放原来的空间
			delete [] _start;
			//开辟空间 
			_start = new T[v.capacity()];
			//拷贝数据 
			for (size_t i =0 ; i < v.size(); ++ i)
			{ 
				_start[i]= v[i];
			}
			//更行相关边界条件
			_finish = _start + v.size();
			_endofstorage = _start + v.capacity();
			return *this;
		 }

首先在右值传参时并没有使用引用传参,因为这样可以间接调用vector的拷贝构造函数,然后将这个拷贝构造出来的容器v与左值进行交换,此时就相当于完成了赋值操作,而容器v会在该函数调用结束时自动析构。

深拷贝版本二(推荐)

  //赋值重载版本二
		 vector<T> & operator= ( vector<T> v) //编译器接收右值的时候自动调用拷贝构造函数
			 //vector& operator= ( vector *this ,vector v)
			 //v1=v
		{
			 //this->swap(v)
			 swap(v);//v1 和v交换
			 return *this;
		}

版本二的理解:
STL 关于vector的细节,vector模拟实现【C++】_第5张图片

析构函数

对容器进行析构时,首先判断该容器是否为空容器,若为空容器,则无需进行析构操作,若不为空,则先释放容器存储数据的空间,然后将容器的各个成员变量设置为空指针即可。

	//析构函数
		~vector()
		{
			//_start==nulllptr 就不需要析构了
			if (_start != nullptr)
			{

				delete[]_start;
				_start = _finish = _endofstorage = nullptr;
			}
		}

迭代器

STL 关于vector的细节,vector模拟实现【C++】_第6张图片

begin

vector当中的begin函数返回容器的首地址

普通版本

        iterator begin()
		{
			return _start;
		}
	

const版本

	 const_iterator begin() const
		{
			return _start;
		}

end

end函数返回容器当中有效数据的下一个数据的地址。

普通版本

		 iterator end()
		 {
			 return _finish;
		 }

const 版本

	 const_iterator end() const
		 {
			 return _finish;
		 }

size和capacity

两个指针相减的结果,即这两个指针之间对应类型的数据个数,所以size可以由_finish - _start得到,而capacity可以由_endofstorage - _start得到。

STL 关于vector的细节,vector模拟实现【C++】_第7张图片

size_t size()const
{
	return _finish - _start; //返回容器当中有效数据的个数
}
size_t capacity()const
{
	return _endofstorage - _start; //返回当前容器的最大容量
}

resize

1、n > size

 将size扩大到n,扩大的数据为val,若val未给出,就用缺省值

 2、n < size

改变_finish的指向,直接将容器的size缩小到n即可

		 void resize(  size_t n ,  const T& val =  T()   )//缺省值是匿名对象,c++对内置类型进行了升级
		 {
			 //n
			 if (n < size())
			 {
				 _finish = _start + n;
		     }
			 else	 //扩容
			 {
				 reserve(n);
				 //插入数据
				 while (_finish!=_start+n)
				 {
					 *_finish = val;
					 _finish++;
				}
			 }
		
		 }

注意: c++把内置类型也看作成类,它们也有默认构造函数,所以在给resize函数的参数val设置缺省值时,设置为T( )即可

reserve

1、n>capacity(),将capacity扩大到n或大于n。
2、n

	void reserve( size_t n)
		{
			if (n > capacity())//扩容 
			{
				size_t sz = size();//用sz记录size 
				T * tmp = new T[n];
				if (_start != nullptr) //如果原空间不为空再拷贝数据
				{
					memcpy(tmp, _start, sizeof(T) * sz);//将_start的数据拷贝到tmp中
					delete[] _start;//释放_start的空间 
				}

				_start = tmp; //将tmp的地址给_start,以便_finish和_endofstorage的更新
				_finish = _start + sz;//更新_finish
				_endofstorage = _start + n;//更新_endofstorage 

			  } 
		}

注意:
1 在进行操作之前需要提前记录当前容器当中有效数据的个数。

2 拷贝容器当中的数据时,不能使用memcpy函数进行拷贝

[ ]

const 版本

		 const T & operator[] (size_t pos) const
			// const T& operator[] (  T const * this,size_t pos) 
		{
			 assert(pos < size());
			 return  _start[pos];

		}

普通版本


		  T& operator[] (size_t pos) 
			 // const T& operator[] (  T  * this,size_t pos) 
		 {
			 assert(pos < size() );
			 return  _start[pos];

		 }

push_back

要尾插数据首先得判断容器是否已满,若已满则需要先进行增容,然后将数据尾插到_finish指向的位置,再将_finish++即可

void push_back(const T & x )
		{
			//如果容量满了
			if (_finish == _endofstorage)
				//扩容
			{
				size_t newcapacity = capacity() == 0 ? 4 : 2 * capacity();
				reserve (newcapacity);//扩容
			}
			*_finish = x;
			_finish++;//_finish指针后移
		}

pop_back

		void pop_back()
		{
			erase(  --end()  );
		}

insert

insert函数可以在所给迭代器pos位置插入数据,在插入数据前先判断是否需要增容,然后将pos位置及其之后的数据统一向后挪动一位,以留出pos位置进行插入,最后将数据插入到pos位置即可。

		 iterator insert(iterator pos, const T& x)
		 {
			 assert(pos >= _start && pos <= _finish);	
			 //如果容量满了,需要扩容 
			 if (_finish == _endofstorage)
			 {
				 size_t newcapacity = capacity() == 0 ? 4 : 2 * capacity();
				 //扩容会开辟一段新的空间 ,把数据从原空间拷贝到新空间,并且释放原空间,但是此时pos这个迭代器还是指向原空间
				 //会导致pos迭代器失效 —更新pos迭代器
				 size_t len = pos - _start;
				 reserve(newcapacity);
				 pos = _start + len;
			  }
			 //容量未满
			 iterator end = _finish -1;
			 //挪动数据
			 while (end>=pos)
			 {
				 *(end + 1) = *(end);
  				 --end;
			 }
			 //插入数据 
			 (*pos) = x;
			 _finish++;
			 return pos;
		 }

insert以后可能会出现迭代器失效
解决方案:再下一次使用迭代器之前,对迭代器重新赋值即可

erase

erase函数可以删除所给迭代器pos位置的数据,在删除数据前需要判断容器释放为空,若为空则需做断言处理,删除数据时直接将pos位置之后的数据统一向前挪动一位,将pos位置的数据覆盖即可

		 //错误的版本
		 //void erase(iterator pos)
		 //{
			// assert(pos >= _start && pos < _finish);
			// iterator it = pos + 1;
			// while (it != _finish)//挪动数据
			// {
			//	 *(it - 1) = *(it);
			//	 it++;
			// }
			// _finish--;
		 //}

		 //正确的版本
		 iterator erase(iterator pos)
		 {
			 assert(pos >= _start && pos < _finish);
			 iterator it = pos + 1;
			 while (it!= _finish)//挪动数据
			 {
				 *(it - 1) = *(it);
				 it++;
			 }
			 _finish--;
			 return pos;
		
		  }

erase 在使用的时候可能会有迭代器失效的问题
解决方案:我们可以接收erase函数的返回值(erase函数返回删除元素的后一个元素的新位置)

swap

swap函数用于交换两个容器的数据,我们可以直接调用库当中的swap函数将两个容器当中的各个成员变量进行交换即可。

		void swap(vector<T> & v)//交换数据
		{
			std::swap(_start , v._start);
			std::swap(_finish, v._finish);
			std::swap(_endofstorage, v._endofstorage);
		}

注意: 这里调用库里的swap模板函数,需要在swap函数之前加上“std::”,告诉编译器在c++标准库寻找swap函数,否则编译器编译时会认为你调用的是正在实现的swap函数(就近原则)。

如果你觉得这篇文章对你有帮助,不妨动动手指给点赞收藏加转发,给鄃鳕一个大大的关注
你们的每一次支持都将转化为我前进的动力!!!

你可能感兴趣的:(c++,rpc,开发语言)