import torch
import torch.nn as nn
embedding1 = nn.Embedding(10,3)
embedding1.weight
Parameter containing:
tensor([[-0.9116, 0.5195, -1.3509],
[ 0.5670, 0.8024, -0.0373],
[-0.8223, -1.2181, -0.6713],
[-1.2734, -1.0591, -1.1202],
[-0.4734, 1.8297, 0.3880],
[ 0.5687, 0.3136, 0.7541],
[ 1.0070, -0.0197, -0.1715],
[ 2.1003, 0.6229, 0.6720],
[-0.1729, -0.6555, 0.2904],
[-1.6015, -1.3011, -0.5837]], requires_grad=True)
embedding2 = nn.Embedding(10,3,padding_idx=0)
embedding2.weight
Parameter containing:
tensor([[ 0.0000, 0.0000, 0.0000],
[-0.5784, -1.5044, -1.7400],
[-1.1197, 0.8234, -0.6458],
[ 0.8204, 2.0259, -0.9619],
[ 0.1317, -0.3696, -1.6996],
[-0.2763, -0.3568, 0.2973],
[-1.2864, -0.2396, 1.3876],
[-1.6487, -0.0096, 0.1984],
[-0.2213, -1.0257, -0.6359],
[ 0.2354, -0.7799, -0.3288]], requires_grad=True)
embedding3 = nn.Embedding(10,3,padding_idx=2)
embedding3.weight
Parameter containing:
tensor([[-1.0108, -1.5298, -0.3603],
[-1.1312, 1.4528, -0.7718],
[ 0.0000, 0.0000, 0.0000],
[-0.8255, -0.4083, 0.7372],
[-0.8608, 0.2809, 0.1835],
[-0.6224, -0.1390, -0.7797],
[-0.6382, 0.6341, 0.2778],
[-0.6328, 0.2855, -0.3784],
[-0.8825, -0.2000, -1.2097],
[ 0.9235, 0.5388, 0.8158]], requires_grad=True)
embedding4 = nn.Embedding(10,3,padding_idx=10-1)
embedding4.weight
Parameter containing:
tensor([[-1.4354, 0.8168, 0.4477],
[-0.4925, -0.3006, 0.7584],
[-0.2400, 1.0259, -0.5391],
[-0.5411, 0.9602, 0.1372],
[-0.6848, 0.0278, -0.1112],
[-0.2092, -1.8230, 1.0283],
[ 0.5441, 0.6374, -0.9901],
[ 0.1115, 0.2792, -0.1808],
[-3.7124, -0.6969, -0.6027],
[ 0.0000, 0.0000, 0.0000]], requires_grad=True)
input = torch.tensor([[1,9,9,9],[9,3,9,6]])
embedding4(input)
tensor([[[-0.4925, -0.3006, 0.7584],
[ 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000]],
[[ 0.0000, 0.0000, 0.0000],
[-0.5411, 0.9602, 0.1372],
[ 0.0000, 0.0000, 0.0000],
[ 0.5441, 0.6374, -0.9901]]], grad_fn=)