matlab编程实践16、17

捕食者与猎物模型


人口增长


        在人口增长或衰减的最简单模型中,增长速度或衰减速度与人口本身的数目成正比。增加或减少人口规模会导致出生和死亡数量成比例地增加或减少。在数学上,可以由以下微分方程描述。

\dot{y}=ky

        可以得出:y(t)=\eta e^{kt},其中\eta =y(0)

        该简单模型在人口增长的初始阶段是正确的,因为初始阶段对人口没有限制。在现实情况下,人口数量增加时,其增长速度按照线性方式下降。这个微分方程模型有时称为logistic方程。

\dot{y}=k(1-y/\mu )y

y(t)=\frac{\mu \eta e^{kt}}{\eta e^{kt}+\mu-\eta }

        新参数μ为承载能力,当y(t)接近于μ,增长率接近于0,人口增长逐渐停止。

%% Exponential and Logistic Growth.采用指数增长和logistic增长
   close all
   figure
   k = 1
   eta = 1
   mu = 20
   t = 0:1/32:8;
   y = mu*eta*exp(k*t)./(eta*exp(k*t) + mu - eta);
   plot(t,[y; exp(t)])
   axis([0 8 0 22])
   title('Exponential and logistic growth')
   xlabel('t')
   ylabel('y')

matlab编程实践16、17_第1张图片

或采用ode45来求常微分方程组的数值解:

%% ODE45 for the Logistic Model.
   figure
   k = 1
   eta = 1
   mu = 20
   ydot = @(t,y) k*(1-y/mu)*y
   ode45(ydot,[0 8],eta)

matlab编程实践16、17_第2张图片

 在使用ode45求解时,@符号和@(t,y)可以定义出t和y的函数。变量t必须给出,即使某个微分方程像这里的方程那样不显含时间变量t。


捕食者与猎物模型


        捕食者和猎物模型为两个方程,这设计两个竞争物种y1(t)和y2(t)的变化情况。y1的增长率是y2的现象函数,反过来也是。

\dot{y_{1}}=(1-\frac{y_{2}}{\mu _{2}})y_{1}

\dot{y_{2}}=-(1-\frac{y_{1}}{\mu _{1}})y_{2}

        单物种logistic模型是有求解公式的,但对捕食者与猎物模型来说,不能得出包括指数函数、三角函数或其他基本函数的解析解,这时只能求出方程的数值解

ode45

matlab编程实践16、17_第3张图片

function predprey(action)
% PREDPREY  Predator-prey gui.
% Drag the red dot to change equilibrium point.
% Drag the blue-green dot to change the initial conditions.

   % Default parameters.

   mu = [300 200]';     % Equilibrium.
   eta = [400 100]';    % Initial conditions.

   % Predator-prey ode

   function ydot = ppode(t,y);
      ydot = [(1-y(2)/mu(2))*y(1);
             -(1-y(1)/mu(1))*y(2)];
   end
  
   % Switchyard.

   if nargin == 0
      action = 'init';
   end
   switch action
      case 'init'
         initialize_graphics
      case 'down'
         locate_dot
         return
      case 'move'
         move_dot
      case 'up'
         free_dot
   end

   % Solve ode.

   [mu, eta] = get_parameters;
   opts = odeset('reltol',1.e-8,'events',@pitstop);
   [t,y,te] = ode45(@ppode,[0 100],eta,opts);

   % Update the plots.

   subplot1(y,action)
   subplot2(t,y,te,action)

   % ----------------------------------

   function [g,isterm,dir] = pitstop(t,y)
      % Event function called by the ode solver.
      % Terminate when y returns to the point where its angle
      % with mu is the same as the angle between eta and mu.
      sig = sign(eta(1)-mu(1)+realmin);
      theta1 = atan2(sig*(y(2)-mu(2)),sig*(y(1)-mu(1)));
      theta0 = atan2(sig*(eta(2)-mu(2)),sig*(eta(1)-mu(1)));
      g = theta1 - theta0;
      isterm = t > 1;
      dir = 1;
   end

   % ----------------------------------

   function initialize_graphics  %初始化图形
      % Set up two subplots, buttons, dots and empty plots.
      clf
      shg
      set(gcf,'units','normal','pos',[.25 .125 .50 .75])
      subplot(2,1,1)
      plot(0,0,'-','color','black');
      line(mu(1),mu(2),'marker','.','markersize',24,'color',[1 0 0]);
      line(eta(1),eta(2),'marker','.','markersize',24,'color',[0 1/2 1/2]);
      xlabel('prey')
      ylabel('predator')
      title('Drag either dot')
      subplot(2,1,2)
      plot(0,[0 0]);
      line([0 0],[0 0],'color','black');
      line([0 0],[0 0],'color','black');
      xlabel('time')
      legend('prey','predator','period','location','northwest')
      set(gcf,'windowbuttondownfcn','predprey(''down'')', ...
              'windowbuttonmotionfcn','predprey(''move'')', ...
              'windowbuttonupfcn','predprey(''up'')')
      set(gcf,'userdata',[])
   end

   % ----------------------------------

   function locate_dot
      % Find if the mouse is selecting one of the dots.
      point = get(gca,'currentpoint');
      h = get(gca,'children');
      y1 = get(h(1:2),'xdata');
      y2 = get(h(1:2),'ydata');
      d = abs([y1{:}]'-point(1,1)) + abs([y2{:}]'-point(1,2));
      k = min(find(d == min(d)));
      tol = .025*max(abs(axis));
      if d(k) < tol
         set(gcf,'userdata',h(k))
      else
         set(gcf,'userdata',[])
      end
   end

   % ----------------------------------

   function move_dot
      % Move the selected dot to a new position.
      point = abs(get(gca,'currentpoint'));
      hit = get(gcf,'userdata');
      if ~isempty(hit)
         set(hit,'xdata',point(1,1),'ydata',point(1,2))
      end
   end

   % ----------------------------------

   function free_dot
      % Deselect the dot.
      set(gcf,'userdata',[])
   end

   % ----------------------------------

   function [mu,eta] = get_parameters
      % Obtain mu and eta from the two dots.
      subplot(2,1,1);
      h = get(gca,'children');
      mu = [get(h(2),'xdata') get(h(2),'ydata')]';
      eta = [get(h(1),'xdata') get(h(1),'ydata')]';
   end

   % ----------------------------------

   function subplot1(y,action)
      % Redraw the phase plane plot and perhaps rescale.
      subplot(2,1,1)
      h = get(gca,'children');
      set(h(3),'xdata',y(:,1),'ydata',y(:,2));
      if ~isequal(action,'move')
         y1max = max(max(y(:,1)),mu(1));
         y2max = max(max(y(:,2)),mu(2));
         axis([0 1.5*y1max 0 1.5*y2max])
      end
   end

   % ----------------------------------

   function subplot2(t,y,te,action)
      % Redraw the time plots, period line, and perhaps rescale.
      subplot(2,1,2)
      if length(te)==0 || te(end) < 1.e-6
         pit = 2*pi;
      else
         pit = te(end);
      end
      h = get(gca,'children');
      ymax = max(max(y));
      t = [t; t+pit; t+2*pit];
      y = [y; y; y];
      set(h(4),'xdata',t,'ydata',y(:,1));
      set(h(3),'xdata',t,'ydata',y(:,2));
      set(h(2),'xdata',[pit pit],'ydata',[0 3*ymax]);
      set(h(1),'xdata',[2*pit 2*pit],'ydata',[0 3*ymax]);
      set(gca,'xtick',[0 pit 2*pit])
      if ~isequal(action,'move')
         axis([0 2.5*pit 0 1.5*ymax])
      end
      subplot(2,1,1)
   end
end

matlab编程实践16、17_第4张图片


轨道


        轨道是多天体系统的动力学问题。


弹跳球模型


eps

matlab编程实践16、17_第5张图片

在初始时刻小球上抛之后,地球的引力是的速度每步都按照固定的比率g减少。

%% Core of bouncer, simple gravity. no gravity

   % Initialize

   z0 = eps;
   g = 9.8;
   c = 0.75;
   delta = 0.005;
   v0 = 21;
   y = [];

   % Bounce 

   while v0 >= 1
      v = v0;
      z = z0;
      while z >= 0
         v = v - delta*g;
         z = z + delta*v;
         y = [y  z];
      end
      v0 = c*v0;
   end

   % Simplified graphics

   close all
   figure
   plot(y)

matlab编程实践16、17_第6张图片


布朗运动


        随机游走(random walk)的简单布朗运动

%% Snapshot of two dimensional Brownian motion.

   figure
   m = 100;
   x = cumsum(randn(m,1));
   y = cumsum(randn(m,1));
   plot(x,y,'.-')
   s = 2*sqrt(m);
   axis([-s s -s s]);

%% Snapshot of three dimensional Brownian motion, brownian3

   n = 50; %粒子个数
   delta = 0.125;
   P = zeros(n,3);
   
   for t = 0:10000
      % Normally distributed random velocities.生成正态分布的随机速度
      V = randn(n,3);
      % Update positions. 更新位置
      P = P + delta*V;
   end

   figure
   plot3(P(:,1),P(:,2),P(:,3),'.')
   box on

matlab编程实践16、17_第7张图片matlab编程实践16、17_第8张图片


 n天体问题


(1)前向法(显式欧拉法)

(2)后向法(隐式欧拉法)

(3)耦对法(前两种方法的折中)

function orbits(n,gui)
% ORBITS  n-body gravitational attraction for n = 2, 3 or 9.
%   ORBITS(2), two bodies, classical elliptic orbits.
%   ORBITS(3), three bodies, artificial planar orbits.
%   ORBITS(9), nine bodies, the solar system with one sun and 8 planets.
%
%   ORBITS(n,false) turns off the uicontrols and generates a static plot.
%   ORBITS(n,false) 关闭 uicontrols 并生成静态图。
%   ORBITS with no arguments is the same as ORBITS(9,true).

   % n = number of bodies.
   % P = n-by-3 array of position coordinates.
   % V = n-by-3 array of velocities
   % M = n-by-1 array of masses
   % H = graphics and user interface handles

   if (nargin < 2)
      gui = true;
   end
   if (nargin < 1);
      n = 9;
   end

   [P,V,M] = initialize_orbits(n);
   H = initialize_graphics(P,gui);

   steps = 20;     % Number of steps between plots
   t = 0;          % time

   while get(H.stop,'value') == 0

      % Obtain step size from slider.
      delta = get(H.speed,'value')/(20*steps);
      
      for k = 1:steps

         % Compute current gravitational forces.
         G = zeros(size(P));
         for i = 1:n
            for j = [1:i-1 i+1:n];
               r = P(j,:) - P(i,:);
               G(i,:) = G(i,:) + M(j)*r/norm(r)^3;
            end
         end
 
         % Update velocities using current gravitational forces.
         V = V + delta*G;
        
         % Update positions using updated velocities.
         P = P + delta*V;

      end

      t = t + steps*delta;
      H = update_plot(P,H,t,gui);
   end

   finalize_graphics(H,gui)
end 

%% Inialize orbits ---------------------------------------------------

function [P,V,M] = initialize_orbits(n)

   switch n

%% Two bodies

   case 2

      % Initial position, velocity, and mass for two bodies.
      % Resulting orbits are ellipses.

      P = [-5  0  0
           10  0  0];
      V = [ 0  -1  0
            0   2  0];
      M = [200  100  0];

%% Three bodies

   case 3

      % Initial position, velocity, and mass for the artificial
      % planar three body problem discussed in the text.

      P = [ 0   0   0
           10   0   0
            0  10   0]; 
      V = [-1  -3   0
            0   6   0
            3  -3   0];
      M = [300  200  100]';

%% Nine bodies

   case 9

      % The solar system.
      % Obtain data from Jet Propulsion Laboratory HORIZONS.
      % http://ssd.jpl.nasa.gov/horizons.cgi  
      % Ephemeris Type: VECTORS
      % Coordinate Orgin: Sun (body center)
      % Time Span: 2008-7-24 to 2008-7-25
      
      sol.p = [0 0 0];
      sol.v = [0 0 0];
      sol.m = 1.9891e+30;
   
      ear.p = [ 5.28609710e-1 -8.67456608e-1  1.28811732e-5];
      ear.v = [ 1.44124476e-2  8.88154404e-3 -6.00575229e-7];
      ear.m = 5.9736e+24;
      
      mar.p = [-1.62489742e+0 -2.24489575e-1  3.52032835e-2];
      mar.v = [ 2.43693131e-3 -1.26669231e-2 -3.25240784e-4];
      mar.m = 6.4185e+23;
      
      mer.p = [-1.02050180e-2  3.07938393e-1  2.60947941e-2];
      mer.v = [-3.37623365e-2  9.23226497e-5  3.10568978e-3];
      mer.m = 3.302e+23;
      
      ven.p = [-6.29244070e-1  3.44860019e-1  4.10363705e-2];
      ven.v = [-9.80593982e-3 -1.78349270e-2  3.21808697e-4];
      ven.m = 4.8685e+24;
      
      jup.p = [ 1.64800250e+0 -4.90287752e+0 -1.65248109e-2];
      jup.v = [ 7.06576969e-3  2.76492888e-3 -1.69566833e-4];
      jup.m = 1.8986e+27;
      
      sat.p = [-8.77327303e+0  3.13579422e+0  2.94573194e-1];
      sat.v = [-2.17081741e-3 -5.26328586e-3  1.77789483e-4];
      sat.m = 5.6846e+26;
      
      ura.p = [ 1.97907257e+1 -3.48999512e+0 -2.69289277e-1];
      ura.v = [ 6.59740515e-4  3.69157117e-3  5.11221503e-6];
      ura.m = 8.6832e+25;
      
      nep.p = [ 2.38591173e+1 -1.82478542e+1 -1.74095745e-1];
      nep.v = [ 1.89195404e-3  2.51313400e-3 -9.54022068e-5];
      nep.m = 1.0243e+26;
   
      P = [sol.p; ear.p; mar.p; mer.p; ven.p; jup.p; sat.p; ura.p; nep.p];
      V = [sol.v; ear.v; mar.v; mer.v; ven.v; jup.v; sat.v; ura.v; nep.v];
      M = [sol.m; ear.m; mar.m; mer.m; ven.m; jup.m; sat.m; ura.m; nep.m];
   
      % Scale mass by solar mass.
      M = M/sol.m;
   
      % Scale velocity to radians per year.
      V = V*365.25/(2*pi);
   
      % Adjust sun's initial velocity so that system total momentum is zero.
      V(1,:) = -sum(diag(M)*V);

   otherwise

      error('No initial data for %d bodies',n)

   end  % switch

end

%% Initialize graphics --------------------------------------

function  H = initialize_graphics(P,gui)
% Initialize graphics and user interface controls
% H = initialize_graphics(P,gui)
% H = handles, P = positions, gui = true or false for gui or static plot.

   dotsize = [36 18 16 12 18 30 24 20 18]';
   color = [4 3 0     % gold
            0 0 3     % blue
            4 0 0     % red
            2 0 2     % magenta
            1 1 1     % gray
            3 0 0     % dark red
            4 2 0     % orange
            0 3 3     % cyan
            0 2 0]/4; % dark green

   clf reset
   n = size(P,1);
   s = max(sqrt(diag(P*P')));
   if n <= 3, s = 2*s; end
   axis([-s s -s s -s/4 s/4])
   axis square
   if n <= 3, view(2), end
   box on
   for i = 1:n
      H.bodies(i) = line(P(i,1),P(i,2),P(i,3),'color',color(i,:), ...
         'marker','.','markersize',dotsize(i),'userdata',dotsize(i));
   end

   H.clock = title('0 years','fontweight','normal');
   H.stop = uicontrol('string','stop','style','toggle', ...
     'units','normal','position',[.90 .02 .08 .04]);
   if n < 9
      maxsp = 0.5;
   else
      maxsp = 10;
   end
   if gui
      H.speed = uicontrol('style','slider','min',0,'value',maxsp/4, ...
         'max',maxsp,'units','normal','position',[.02 .02 .30 .04], ...
         'sliderstep',[1/20 1/20]);
      uicontrol('string','trace','style','toggle','units','normal', ...
         'position',[.34 .02 .06 .04],'callback','tracer');
      uicontrol('string','in','style','pushbutton','units','normal', ...
         'position',[.42 .02 .06 .04],'callback','zoomer(1/sqrt(2))')
      uicontrol('string','out','style','pushbutton','units','normal', ...
         'position',[.50 .02 .06 .04],'callback','zoomer(sqrt(2))')
      uicontrol('string','x','style','pushbutton','units','normal', ...
         'position',[.58 .02 .06 .04],'callback','view(0,0)')
      uicontrol('string','y','style','pushbutton','units','normal', ...
         'position',[.66 .02 .06 .04],'callback','view(90,0)')
      uicontrol('string','z','style','pushbutton','units','normal', ...
         'position',[.74 .02 .06 .04],'callback','view(0,90)')
      uicontrol('string','3d','style','pushbutton','units','normal', ...
         'position',[.82 .02 .06 .04],'callback','view(-37.5,30)')
   else
      H.traj = P;
      H.speed = uicontrol('value',maxsp,'vis','off');
   end
   set(gcf,'userdata',H)
   drawnow
end

%% Tracer ----------------------------------------------------------

function tracer
% Callback for trace button
   H = get(gcf,'userdata');
   bodies = flipud(H.bodies);
   trace = get(gcbo,'value');
   n = length(bodies);
   for i = 1:n
      if trace
         ms = 6;
         if n == 9 && i == 1, ms = 24; end
         set(bodies(i),'markersize',ms,'erasemode','none')
      else
         ms = get(bodies(i),'userdata');
         set(bodies(i),'markersize',ms,'erasemode','normal')
      end
   end
   if trace
      set(H.clock,'erasemode','xor')
   else
      set(H.clock,'erasemode','normal')
   end
end

%% Zoomer  ---------------------------------------------------

function zoomer(zoom)
% Callback for in and out buttons
   H = get(gcf,'userdata');
   [az,el] = view;
   view(3);
   axis(zoom*axis);
   view(az,el);
   set(H.speed,'max',zoom*get(H.speed,'max'), ...
      'value',zoom*get(H.speed,'value'));
end

%% Update plot ------------------------------------------------

function H = update_plot(P,H,t,gui)
   set(H.clock,'string',sprintf('%10.2f years',t/(2*pi)))
   for i = 1:size(P,1)
      set(H.bodies(i),'xdata',P(i,1),'ydata',P(i,2),'zdata',P(i,3))
   end
   if ~gui
      H.traj(:,:,end+1) = P;
      n = size(H.traj,1);
      switch n
         case 2, set(H.stop,'value',t > 11)
         case 3, set(H.stop,'value',t > 22.5)
         case 9, set(H.stop,'value',t > 200)
      end
   end
   drawnow
end

%% Finalize graphics  -------------------------------------------

function finalize_graphics(H,gui)
   delete(findobj('type','uicontrol'))
   uicontrol('string','close','style','pushbutton', ...
     'units','normal','position',[.90 .02 .08 .04],'callback','close');
   if ~gui
      n = size(H.traj,1);
      for i = 1:n
         line(squeeze(H.traj(i,1,:)),squeeze(H.traj(i,2,:)), ...
            squeeze(H.traj(i,3,:)),'color',get(H.bodies(i),'color'), ...
            'linewidth',2)
      end
   end
end
%% Run all three orbits, with 2, 3, and 9 bodies, and no gui.

   figure
   orbits(2,false)

   figure
   orbits(3,false)

   figure
   orbits(9,false)

matlab编程实践16、17_第9张图片matlab编程实践16、17_第10张图片matlab编程实践16、17_第11张图片

你可能感兴趣的:(matlab)