HashMap详解

简介

Java为数据结构中的映射定义了一个接口java.util.Map,此接口主要有四个常用的实现类,分别是HashMapHashtableLinkedHashMapTreeMap,类继承关系如下图所示:

image.png

下面针对各个实现类的特点做一些说明:

  1. HashMap:根据键的hashCode值存储数据,直接定位到它的值,因而具有很快的访问速度,但遍历顺序却是不确定的。 HashMap最多只允许一条记录的键为null,允许多条记录的值为nullHashMap非线程安全,即任一时刻可以有多个线程同时写HashMap,可能会导致数据的不一致。如果需要满足线程安全,可以用 CollectionssynchronizedMap方法使HashMap具有线程安全的能力,或者使用ConcurrentHashMap

  2. HashTable:遗留类,很多映射的常用功能与HashMap类似,不同的是它承自Dictionary类,并且是线程安全的,任一时间只有一个线程能写Hashtable,并发性不如ConcurrentHashMap,因为ConcurrentHashMap引入了分段锁。Hashtable不建议在新代码中使用,不需要线程安全的场合可以用HashMap替换,需要线程安全的场合可以用ConcurrentHashMap替换。

  3. LinkedHashMapHashMap的一个子类,保存了记录的插入顺序,在用Iterator遍历LinkedHashMap时,先得到的记录肯定是先插入的,也可以在构造时带参数,按照访问次序排序。

  4. TreeMap:实现NavigableMap接口,NavigableMap继承SortedMap,能够把它保存的记录根据键排序,默认是按键值的升序排序,也可以指定排序的比较器,当用Iterator遍历TreeMap时,得到的记录是排过序的。如果使用排序的映射,建议使用TreeMap。在使用TreeMap时,key必须实现Comparable接口或者在构造TreeMap传入自定义的Comparator,否则会在运行时抛出java.lang.ClassCastException类型的异常。

    注意:对于上述四种Map类型的类,要求映射中的key是不可变对象。不可变对象是该对象在创建后它的哈希值不会被改变。如果对象的哈希值发生变化,Map对象很可能就定位不到映射的位置了。

名称 产生时间 是否有序 是否允许为空 数据结构 安全性
HashMap jdk1.2 无序 一条记录的key为空,允许多条记录的value为空 Jdk1.8之前 数组+链表;jdk1.8 数组+链表+红黑树 线程不安全
HashTable jdk1.1 无序 key、value都不允许为null 哈希表 线程安全
LinkedHashMap jdk1.4 有序,保存插入的顺序 允许为空 散列表和双向链表 线程不安全
TreeMap jdk1.2 有序,按照key排序 不允许出现重复的key 红黑树 线程不安全

通过上面的比较,我们知道了HashMapJavaMap家族中一个普通成员,鉴于它可以满足大多数场景的使用条件,是使用频度最高的一个。下文我们主要结合源码,从存储结构、常用方法分析、扩容以及安全性等方面深入讲解HashMap的工作原理。

内部实现

搞清楚HashMap,首先需要知道HashMap是什么,即它的存储结构—字段;其次弄明白它能干什么,即它的功能实现—方法。下面我们针对这两个方面详细展开讲解。

存储结构—字段

从结构实现来讲,HashMap是数组+链表+红黑树(JDK1.8增加了红黑树部分)实现的,如下如所示。

image
  1. 数据底层存储的是Node节点,NodeHashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对)。上图中的每个黑色圆点就是一个Node对象。

  2. 存储方式的优点:HashMap就是使用哈希表来存储的。哈希表为解决冲突,可以采用开放地址法和链地址法等来解决问题,JavaHashMap采用了链地址法。链地址法,简单来说,就是数组加链表的结合。在数组的每个元素上都一个链表结构,当key被Hash后,得到数组下标,把数据放在对应下标元素的链表上。

static final float DEFAULT_LOAD_FACTOR = 0.75f; // 负载因子
static final int TREEIFY_THRESHOLD = 8; // 所能容纳的最大数据量的Node(键值对)个数
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 HashMap默认容量 16

在JDK1.8版本中,对数据结构做了进一步的优化,引入了红黑树。当链表长度太长(默认超过8)时,链表就转换为红黑树,利用红黑树快速增删改查的特点提高HashMap的性能

为什么链表转换为红黑树的阈值是8?通过源码我们得知HashMap源码作者通过泊松分布算出,当桶中结点个数为8时,出现的几率是亿分之6的,因此常见的情况是桶中个数小于8的情况,此时链表的查询性能和红黑树相差不多,因为转化为树还需要时间和空间,所以此时没有转化成树的必要。详解
逆向:什么时候从红黑树转换为链表呢?答案是当红黑树中的节点个数少于6时

功能实现

HashMap的内部功能实现很多,本文主要从根据key获取哈希桶数组索引位置、put方法的详细执行、扩容过程三个具有代表性的点深入展开讲解。

1. 确定哈希桶数组索引位置

不管增加、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的元素位置尽量分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,不用遍历链表,大大优化了查询的效率。HashMap定位数组索引位置,直接决定了hash方法的离散性能。先看看源码的实现(方法一+方法二):

方法一:
static final int hash(Object key) {   //jdk1.8 & jdk1.7
 int h;
 // h = key.hashCode() 为第一步 取hashCode值
 // h ^ (h >>> 16)  为第二步 高位参与运算
 return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
方法二:
static int indexFor(int h, int length) {  //jdk1.7的源码,jdk1.8没有这个方法,但是实现原理一样的
 return h & (length-1);  //第三步 取模运算
}

这里的Hash算法本质上就是三步:取key的hashCode值、高位运算、取模运算

对于任意给定的对象,只要它的hashCode()返回值相同,那么程序调用方法一所计算得到的Hash码值总是相同的。我们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,模运算的消耗还是比较大的,在HashMap中是这样做的:调用方法二来计算该对象应该保存在table数组的哪个索引处。

这个方法非常巧妙,它通过h & (table.length -1)来得到该对象的保存位,而HashMap底层数组的长度总是2的n次方,这是HashMap在速度上的优化。当length总是2的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&%具有更高的效率。

在JDK1.8的实现中,优化了高位运算的算法,通过hashCode()的高16位异或低16位实现的:(h = k.hashCode()) ^ (h >>> 16),主要是从速度、功效、质量来考虑的,这么做可以在数组table的length比较小的时候,也能保证考虑到高低Bit都参与到Hash的计算中,同时不会有太大的开销。

下面举例说明下,n为table的长度。

image

2. 分析HashMap的put方法

HashMap的put方法执行过程可以通过下图来理解,自己有兴趣可以去对比源码更清楚地研究学习。

image

JDK1.8HashMap的put方法源码如下:

 1 public V put(K key, V value) {
 2     // 对key的hashCode()做hash
 3     return putVal(hash(key), key, value, false, true);
 4 }
 5 
 6 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
 7                boolean evict) {
 8     Node[] tab; Node p; int n, i;
 9     // 步骤①:tab为空则创建
10     if ((tab = table) == null || (n = tab.length) == 0)
11         n = (tab = resize()).length;
12     // 步骤②:计算index,并对null做处理 
13     if ((p = tab[i = (n - 1) & hash]) == null) 
14         tab[i] = newNode(hash, key, value, null);
15     else {
16         Node e; K k;
17         // 步骤③:节点key存在,直接覆盖value
18         if (p.hash == hash &&
19             ((k = p.key) == key || (key != null && key.equals(k))))
20             e = p;
21         // 步骤④:判断该链为红黑树
22         else if (p instanceof TreeNode)
23             e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
24         // 步骤⑤:该链为链表
25         else {
26             for (int binCount = 0; ; ++binCount) {
27                 if ((e = p.next) == null) {
28                     p.next = newNode(hash, key,value,null);
                         //链表长度大于8转换为红黑树进行处理
29                     if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st  
30                         treeifyBin(tab, hash);
31                     break;
32                 }
                      // key已经存在直接覆盖value
33                 if (e.hash == hash &&
34                     ((k = e.key) == key || (key != null && key.equals(k)))) 
35                            break;
36                 p = e;
37             }
38         }
39 
40         if (e != null) { // existing mapping for key
41             V oldValue = e.value;
42             if (!onlyIfAbsent || oldValue == null)
43                 e.value = value;
44             afterNodeAccess(e);
45             return oldValue;
46         }
47     }

48     ++modCount;
49     // 步骤⑥:超过最大容量 就扩容
50     if (++size > threshold)
51         resize();
52     afterNodeInsertion(evict);
53     return null;
54 }

①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;

②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;

③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;

④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;

⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;

⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。

3. 扩容机制

扩容(resize)就是重新计算容量,向HashMap对象里不停的添加元素,而HashMap对象内部的数组无法装载更多的元素时,对象就需要扩大数组的长度,以便能装入更多的元素。当然Java里的数组是无法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组,就像我们用一个小桶装水,如果想装更多的水,就得换大水桶。

我们分析下resize的源码,鉴于JDK1.8融入了红黑树,较复杂,为了便于理解我们仍然使用JDK1.7的代码,好理解一些,本质上区别不大,具体区别后文再说。

1 void resize(int newCapacity) {   // 传入新的容量
 2     Entry[] oldTable = table;    // 引用扩容前的Entry数组
 3     int oldCapacity = oldTable.length; 
 4     if (oldCapacity == MAXIMUM_CAPACITY) {  // 扩容前的数组大小如果已经达到最大(2^30)了
 5         threshold = Integer.MAX_VALUE; // 修改阈值为int的最大值(2^31-1),这样以后就不会扩容了
 6         return;
 7     }
 8
 9     Entry[] newTable = new Entry[newCapacity];  // 初始化一个新的Entry数组
10     transfer(newTable);                         //!!将数据转移到新的Entry数组里
11     table = newTable;                           // HashMap的table属性引用新的Entry数组
12     threshold = (int)(newCapacity * loadFactor);// 修改阈值
13 }

这里就是使用一个容量更大的数组来代替已有的容量小的数组,transfer()方法将原有Entry数组的元素拷贝到新的Entry数组里。

 1 void transfer(Entry[] newTable) {
 2     Entry[] src = table;                   // src引用了旧的Entry数组
 3     int newCapacity = newTable.length;
 4     for (int j = 0; j < src.length; j++) { // 遍历旧的Entry数组
 5         Entry e = src[j];             // 取得旧Entry数组的每个元素
 6         if (e != null) {
 7             src[j] = null;// 释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)
 8             do {
 9                 Entry next = e.next;
10                 int i = indexFor(e.hash, newCapacity); // !!重新计算每个元素在数组中的位置
11                 e.next = newTable[i]; // 标记[1]
12                 newTable[i] = e;      // 将元素放在数组上
13                 e = next;             // 访问下一个Entry链上的元素
14             } while (e != null);
15         }
16     }
17 }

newTable[i]的引用赋给了e.next,也就是使用了单链表的头插入方式,同一位置上新元素总会被放在链表的头部位置;这样先放在一个索引上的元素终会被放到Entry链的尾部(如果发生了hash冲突的话),这一点和Jdk1.8有区别,下文详解。在旧数组中同一条Entry链上的元素,通过重新计算索引位置后,有可能被放到了新数组的不同位置上。

下面我们讲解下JDK1.8做了哪些优化。经过观测可以发现,我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。看下图可以明白这句话的意思,n为table的长度,图(a)表示扩容前的key1和key2两种key确定索引位置的示例,图(b)表示扩容后key1和key2两种key确定索引位置的示例,其中hash1是key1对应的哈希与高位运算结果。

image

元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:

image

因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,可以看看下图为16扩充为32的resize示意图:

image

这个设计确实非常的巧妙,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的bucket了。这一块就是JDK1.8新增的优化点。有一点注意区别,JDK1.7中rehash的时候,旧链表迁移新链表的时候,如果在新表的数组索引位置相同,则链表元素会倒置,但是从上图可以看出,JDK1.8不会倒置。有兴趣的同学可以研究下JDK1.8的resize源码,写的很赞,如下:

 1  final Node[] resize() {
 2     Node[] oldTab = table;
 3     int oldCap = (oldTab == null) ? 0 : oldTab.length;
 4     int oldThr = threshold;
 5     int newCap, newThr = 0;
 6     if (oldCap > 0) {
 7         // 超过最大值就不再扩充了,就只好随你碰撞去吧
 8         if (oldCap >= MAXIMUM_CAPACITY) {
 9             threshold = Integer.MAX_VALUE;
10             return oldTab;
11         }
12         // 没超过最大值,就扩充为原来的2倍
13         else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
14                  oldCap >= DEFAULT_INITIAL_CAPACITY)
15             newThr = oldThr << 1; // double threshold
16     }
17     else if (oldThr > 0) // initial capacity was placed in threshold
18         newCap = oldThr;
19     else {               // zero initial threshold signifies using defaults
20         newCap = DEFAULT_INITIAL_CAPACITY;
21         newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
22     }
23     // 计算新的resize上限
24     if (newThr == 0) {
25 
26         float ft = (float)newCap * loadFactor;
27         newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
28                   (int)ft : Integer.MAX_VALUE);
29     }
30     threshold = newThr;
31     @SuppressWarnings({"rawtypes","unchecked"})
32         Node[] newTab = (Node[])new Node[newCap];
33     table = newTab;
34     if (oldTab != null) {
35         // 把每个bucket都移动到新的buckets中
36         for (int j = 0; j < oldCap; ++j) {
37             Node e;
38             if ((e = oldTab[j]) != null) {
39                 oldTab[j] = null;
40                 if (e.next == null)
41                     newTab[e.hash & (newCap - 1)] = e;
42                 else if (e instanceof TreeNode)
43                     ((TreeNode)e).split(this, newTab, j, oldCap);
44                 else { // 链表优化重hash的代码块
45                     Node loHead = null, loTail = null;
46                     Node hiHead = null, hiTail = null;
47                     Node next;
48                     do {
49                         next = e.next;
50                         // 原索引
51                         if ((e.hash & oldCap) == 0) {
52                             if (loTail == null)
53                                 loHead = e;
54                             else
55                                 loTail.next = e;
56                             loTail = e;
57                         }
58                         // 原索引+oldCap
59                         else {
60                             if (hiTail == null)
61                                 hiHead = e;
62                             else
63                                 hiTail.next = e;
64                             hiTail = e;
65                         }
66                     } while ((e = next) != null);
67                     // 原索引放到bucket里
68                     if (loTail != null) {
69                         loTail.next = null;
70                         newTab[j] = loHead;
71                     }
72                     // 原索引+oldCap放到bucket里
73                     if (hiTail != null) {
74                         hiTail.next = null;
75                         newTab[j + oldCap] = hiHead;
76                     }
77                 }
78             }
79         }
80     }
81     return newTab;
82 }

HashMap 的长度为什么是2的幂次方

为了能让 HashMap 存取高效,尽量较少碰撞,也就是要尽量把数据分配均匀,每个链表/红黑树长度大致相同。这个实现就是把数据存到哪个链表/红黑树中的算法。
这个算法应该如何设计呢?
我们首先可能会想到采用%取余的操作来实现。但是,重点来了:“取余(%)操作中如果除数是2的幂次则等价于与其除数减一的与(&)操作(也就是说 hash%length==hash&(length-1)的前提是 length 是2的 n 次方;)。” 并且采用二进制位操作 &,相对于%能够提高运算效率,这就解释了 HashMap 的长度为什么是2的幂次方。

HashMap 多线程操作导致死循环问题

在多线程下,进行 put 操作会导致HashMap死循环,原因在于HashMap的扩容 resize()方法。由于扩容是新建一个数组,复制原数据到数组。由于数组下标挂有链表,所以需要复制链表,但是多线程操作有可能导致环形链表。复制链表过程如下:
以下模拟2个线程同时扩容。假设,当前HashMap的空间为2(临界值为1),hashcode分别为 0 和 1,在散列地址 0 处有元素 A 和 B,这时候要添加元素 C,C 经过hash运算,得到散列地址为 1,这时候由于超过了临界值,空间不够,需要调用 resize方法进行扩容,那么在多线程条件下,会出现条件竞争,模拟过程如下:

线程一:读取到当前的 HashMap 情况,在准备扩容时,线程二介入

image

线程二:读取 HashMap,进行扩容

image

线程一:继续执行

image

这个过程为,先将 A 复制到新的hash表中,然后接着复制 B 到链头(A 的前边:B.next=A),本来 B.next=null,到此也就结束了(跟线程二一样的过程),但是,由于线程二扩容的原因,将 B.next=A,所以,这里继续复制A,让 A.next=B,由此,环形链表出现:B.next=A; A.next=B

JDK 8的改进

JDK 8 中采用的是位桶 + 链表/红黑树的方式,当某个位桶的链表的长度超过 8 的时候,这个链表就将转换成红黑树

HashMap 不会因为多线程 put 导致死循环(JDK 8 用 head 和 tail 来保证链表的顺序和之前一样;JDK 7 rehash 会倒置链表元素),但是还会有数据丢失等弊端(并发本身的问题)。因此多线程情况下还是建议使用 ConcurrentHashMap

多线程下遍历会抛出ConcurrentModificationException

如果在使用迭代器的过程中有其他线程修改了map,那么将抛出ConcurrentModificationException,这就是所谓fail-fast策略。
详见

线程安全性

线程不安全的,在多线程场景下,使用线程安全的ConcurrentHashMap

小结

(1) 扩容是一个特别耗性能的操作,所以当程序员在使用HashMap的时候,估算map的大小,初始化的时候给一个大致的数值,避免map进行频繁的扩容。

(2) 负载因子是可以修改的,也可以大于1,但是建议不要轻易修改,除非情况非常特殊。

(3) HashMap是线程不安全的,不要在并发的环境中同时操作HashMap,建议使用ConcurrentHashMap

(4) JDK1.8引入红黑树很大程度上优化了HashMap的性能。
(5) JDK1.7 put元素:头插法;jdk1.8:尾插法

你可能感兴趣的:(HashMap详解)