行列式类
在讨论行列式的一些性质之前,我先根据之前讲到的内容写一个行列式的类。
// linera algebra determinant class
// filename: det.js
let Det;
(function(){
Det = function (array) {
this.array = array
this.length = array.length
// 阶乘,元素个数
this._itemLength = null
// 保存逆序数的数组
this.inverseNumberArray = null
// 保存每个项的数组
this._items = null
this.itemValues = null
// 是否需要重新计算
this.reCalc = false
}
// 阶乘
Det.prototype.itemLength = function () {
if (this._itemLength == null) {
this._itemLength = factorial(this.length)
}
return this._itemLength
}
// 逆序数
Det.prototype.inverseNumber = function (index) {
if (this.inverseNumberArray == null) {
this.inverseNumberArray = new Array(this.itemLength())
}
if (this.inverseNumberArray[index] == undefined) {
let sum = 0
let item = this.items()[index]
for (let i = 0, len = item.length; i < len; i++) {
// 取出第i个数
let digit = item[i]
// 用第i个数与第i位之后的数进行对比
for (let j = i + 1; j < len; j++) {
if (digit > item[j]) {
sum++
}
}
}
this.inverseNumberArray[index] = sum
}
return this.inverseNumberArray[index]
}
// 获取保存每个项的数组
Det.prototype.items = function () {
if (this._items == null) {
this._items = []
let standardIndex = []
for (let i = 0; i < this.length; i++) {
standardIndex.push(i)
}
generate(this.length, standardIndex, this._items)
}
return this._items
}
// 获取单个项的值
Det.prototype.itemValue = function (index) {
if (this.itemValues == null) {
this.itemValues = new Array(this.itemLength())
}
if(this.itemValues[index]==undefined || this.reCalc) {
let inverseCount = this.inverseNumber(index)
let data = this.array
let item = this.items()[index]
let value = (inverseCount % 2 ? -1 : 1)
for (let j = 0, n = this.length; j < n; j++) {
value *= data[j][item[j]]
}
this.itemValues[index] = value
}
return this.itemValues[index]
}
Det.prototype.calc = function () {
let sum = 0
for (let i = 0, len = this.itemLength(); i < len; i++) {
sum += this.itemValue(i)
}
console.log(this.array)
console.log(sum)
return sum
}
})()
// filename util.js
/**
* 列举所有@param A 数组元素的排列
*
* @param {Number} n A长度
* @param {Array} A 元素
* @param {Array} result 全部结果
*/
function generate(n, A, result) {
if (n == 1) {
result.push(A.slice())
}
else {
for (let i = 0; i < n - 1; i++) {
generate(n - 1, A, result)
if (n % 2 == 0) {
swap(A, i, n - 1)
}
else {
swap(A, 0, n - 1)
}
}
generate(n - 1, A, result)
}
}
/**
* 计算n的阶乘
*
* @param {Number} n
*/
function factorial(n) {
var result = 1
for (i = 2; i <= n; i++) {
result *= i
}
return result
}
/**
* 交互数组中的两个元素
*
* @param {Array} arr
* @param {Number} i
* @param {Number} j
*/
function swap(arr, i, j) {
var temp = arr[i]
arr[i] = arr[j]
arr[j] = temp
return arr
}
基本的东西准备好了,下面我们往行列式类Det
上加一些功能,即行列式的一些性质。
性质1:行列式与它的转置行列式相等
行列式的转置行列式即行变成列,列变成行。
在det.js
添加:
// 获取转置行列式
Det.prototype.getTransposedDet = function () {
let len = this.length
let newArr = new Array(len)
for (let i = 0; i < len; i++) {
if(!newArr[i]) {
newArr[i] = new Array(len)
}
for (let j = 0; j < len; j++) {
newArr[i][j] = this.array[j][i]
}
}
return new Det(newArr)
}
测试:
let det = new Det([
[2, 1, -5, 1],
[1, -3, 0, -6],
[0, 2, -1, 2],
[1, 4, -7, 6]
])
det.calc() // 27
let tdet = det.getTransposedDet()
tdet.calc() // 27
这里可以把tdet.array
打印出来,看是不是真的转置成功。
性质2:互换行列式的两行(列),行列式变号
添加如下方法
// 互换行列式的两行(列)
Det.prototype.swap = function (n0, n1, isRow=true) {
let newArr = JSON.parse(JSON.stringify(this.array))
if(isRow) {
newArr = swap(newArr, n0, n1)
} else {
let len = this.length
for (let i = 0; i < len; i++) {
newArr[i] = swap(newArr[i], n0, n1)
}
}
return new Det(newArr)
}
测试:
let det = new Det([
[2, 1, -5, 1],
[1, -3, 0, -6],
[0, 2, -1, 2],
[1, 4, -7, 6]
])
det.calc() // 27
let tdet = det.swap(3, 1, true) // -27
// let tdet = det.swap(3, 1, false) // -27
tdet.calc()
性质3:行列式的某一行(列)中所有元素都乘以同一个数k
,等于用数k
乘以此行列式
添加方法:
// 某一行(列)乘以一个数
/**
*
* @param {Number} n 行/列,从0开始
* @param {Number} k 数
* @param {Boolean} isRow 默认行
*/
Det.prototype.multiply = function (n, k, isRow = true) {
let newArr = JSON.parse(JSON.stringify(this.array)) //deep copy
let len = this.length
if (isRow) {
for (let i = 0; i < len; i++) {
newArr[n][i] *= k
}
} else {
for (let i = 0; i < len; i++) {
newArr[i][n] *= k
}
}
return new Det(newArr)
}
通过计算乘之前和之后的两个结果来看:
let det = new Det([
[2, 1, -5, 1],
[1, -3, 0, -6],
[0, 2, -1, 2],
[1, 4, -7, 6]
])
det.calc() // 27
det.multiply(1, 5).calc() // 135
也可以通过计算下面两个行列式来验证,第二个行列式的第一列是第一个行列式第一列的两倍,计算结果分别为27和54
let det = new Det([
[2, 1, -5, 1],
[1, -3, 0, -6],
[0, 2, -1, 2],
[1, 4, -7, 6]
])
det.calc() // 27
let det2 = new Det([
[4, 1, -5, 1],
[2, -3, 0, -6],
[0, 2, -1, 2],
[2, 4, -7, 6]
])
det2.calc() // 54
性质4:行列式中如果有两行(列)元素成比例,则此行列式为零
可通过计算下面行列式验证:
let det = new Det([
[2, 1, -5, 1], //1
[1, -3, 0, -6],
[0, 2, -1, 2],
[4, 2, -10, 2] //2*k
])
det.calc() // 0
let det2 = new Det([
[2, 1, -5, 1], //1
[1, -3, 0, -6],
[0, 2, -1, 2],
[2, 1, -5, 1] //1
])
det2.calc() // 0
性质5:若行列式的某一行(列)的元素都是两个数之和,如:
let det = new Det([
[2 + 3, 1, 2, 1],
[1 + 4, -3, 5, -6],
[0 - 5, 2, 2, 2],
[4 + 1, 2, -4, 4]
])
det.calc() //80
let det2 = new Det([
[2, 1, 2, 1],
[1, -3, 5, -6],
[0, 2, 2, 2],
[4, 2, -4, 4]
])
det2.calc() //36
let det3 = new Det([
[3, 1, 2, 1],
[4, -3, 5, -6],
[-5, 2, 2, 2],
[1, 2, -4, 4]
])
det3.calc() //44
性质6:把行列式的某一行(列)的各元素乘以同一个倍数加到另一行(列)对应的元素上去,行列式不变。
在Det
类上添加方法
// 性质6:把行列式的某一行(列)的各元素乘以同一个倍数加到另一行(列)对应的元素上去,行列式不变。
/**
*
* @param {Number} n0 行/列
* @param {Number} n1 行/列
* @param {Number} k 行列式的 n0(行/列) + n1(行/列)*k
* @param {Boolean} isRow
*/
Det.prototype.plusLine = function (n0, n1, k, isRow=true) {
if(n0==n1) {
throw('不能加到同一行或列')
}
let newArr = JSON.parse(JSON.stringify(this.array))
let len = this.length
if (isRow) {
for (let i = 0; i < len; i++) {
newArr[n0][i] += newArr[n1][i] * k
}
} else {
for (let i = 0; i < len; i++) {
newArr[i][n0] += newArr[i][n1] * k
}
}
return new Det(newArr)
}
验证:
// 性质6
let det = new Det([
[1, 1, 2, 1],
[1, -3, 5, 3],
[0, 2, 2, 2],
[1, 2, -4, 4]
])
det.calc() //-112
// 第1列每行对应元素加上第4列每行对应元素乘3
let det1 = det.plusLine(0, 3, 3, false)
det1.calc() //-112
代码
- tomfriwel/linearAlgebraPro
参考
- 线性代数-同济大学(第五版)课件 [完整版]