[译] 分分钟学会一门语言之 Python 篇

Python was created by Guido Van Rossum in the early 90's. It is now one of the most popular
languages in existence. I fell in love with Python for its syntactic clarity. It's basically
executable pseudocode.

Python 是 90 年代初由 Guido Van Rossum 创立的。它是当前最流行的程序语言之一。它那纯净的语法令我一见倾心,它简直就是可以运行的伪码。

Feedback would be highly appreciated! You can reach me at @louiedinh or louiedinh [at] [google's email service]

非常欢迎您提交反馈!您可以通过 @louiedinh 联系到我,也可以发邮件到 louiedinh 开头的 Google Email 账号。

Note: This article applies to Python 2.7 specifically, but should be applicable
to Python 2.x. Look for another tour of Python 3 soon!

请注意:本文以 Python 2.7 为基准,但也应该适用于所有 2.X 版本。记得继续学习未来的 Python 3 哦!

# Single line comments start with a hash.

# 单行注释由一个井号开头。

""" Multiline strings can be written

    using three "'s, and are often used

    as comments

    三个双引号(或单引号)之间可以写多行字符串,

    通常用来写注释。

"""



####################################################

## 1. Primitive Datatypes and Operators

## 1. 基本数据类型和操作符

####################################################



# You have numbers

# 数字就是数字

3 #=> 3



# Math is what you would expect

# 四则运算也是你所期望的那样

1 + 1 #=> 2

8 - 1 #=> 7

10 * 2 #=> 20

35 / 5 #=> 7



# Division is a bit tricky. It is integer division and floors the results

# automatically.

# 除法有一点棘手。

# 对于整数除法来说,计算结果会自动取整。

5 / 2 #=> 2



# To fix division we need to learn about floats.

# 为了修正除法的问题,我们需要先学习浮点数。

2.0     # This is a float

2.0     # 这是一个浮点数

11.0 / 4.0 #=> 2.75 ahhh...much better

11.0 / 4.0 #=> 2.75 啊……这样就好多了



# Enforce precedence with parentheses

# 使用小括号来强制计算的优先顺序

(1 + 3) * 2 #=> 8



# Boolean values are primitives

# 布尔值也是基本数据类型

True

False



# negate with not

# 使用 not 来取反

not True #=> False

not False #=> True



# Equality is ==

# 等式判断用 ==

1 == 1 #=> True

2 == 1 #=> False



# Inequality is !=

# 不等式判断是用 !=

1 != 1 #=> False

2 != 1 #=> True



# More comparisons

# 还有更多的比较运算

1 < 10 #=> True

1 > 10 #=> False

2 <= 2 #=> True

2 >= 2 #=> True



# Comparisons can be chained!

# 居然可以把比较运算串连起来!

1 < 2 < 3 #=> True

2 < 3 < 2 #=> False



# Strings are created with " or '

# 使用 " 或 ' 来创建字符串

"This is a string."

'This is also a string.'



# Strings can be added too!

# 字符串也可以相加!

"Hello " + "world!" #=> "Hello world!"



# A string can be treated like a list of characters

# 一个字符串可以视为一个字符的列表

# (译注:后面会讲到“列表”。)

"This is a string"[0] #=> 'T'



# % can be used to format strings, like this:

# % 可以用来格式化字符串,就像这样:

"%s can be %s" % ("strings", "interpolated")



# A newer way to format strings is the format method.

# This method is the preferred way

# 后来又有一种格式化字符串的新方法:format 方法。

# 我们推荐使用这个方法。

"{0} can be {1}".format("strings", "formatted")



# You can use keywords if you don't want to count.

# 如果你不喜欢数数的话,可以使用关键字(变量)。

"{name} wants to eat {food}".format(name="Bob", food="lasagna")



# None is an object

# None 是一个对象

None #=> None



# Don't use the equality `==` symbol to compare objects to None

# Use `is` instead

# 不要使用相等符号 `==` 来把对象和 None 进行比较,

# 而要用 `is`。

"etc" is None #=> False

None is None  #=> True



# The 'is' operator tests for object identity. This isn't

# very useful when dealing with primitive values, but is

# very useful when dealing with objects.

# 这个 `is` 操作符用于比较两个对象的标识。

# (译注:对象一旦建立,其标识就不会改变,可以认为它就是对象的内存地址。)

# 在处理基本数据类型时基本用不上,

# 但它在处理对象时很有用。



# None, 0, and empty strings/lists all evaluate to False.

# All other values are True

# None、0 以及空字符串和空列表都等于 False,

# 除此以外的所有值都等于 True。

0 == False  #=> True

"" == False #=> True





####################################################

## 2. Variables and Collections

## 2. 变量和集合

####################################################



# Printing is pretty easy

# 打印输出很简单

print "I'm Python. Nice to meet you!"





# No need to declare variables before assigning to them.

# 在赋值给变量之前不需要声明

some_var = 5    # Convention is to use lower_case_with_underscores

                # 变量名的约定是使用下划线分隔的小写单词

some_var #=> 5



# Accessing a previously unassigned variable is an exception.

# See Control Flow to learn more about exception handling.

# 访问一个未赋值的变量会产生一个异常。

# 进一步了解异常处理,可参见下一节《控制流》。

some_other_var  # Raises a name error

                # 会抛出一个名称错误



# if can be used as an expression

# if 可以作为表达式来使用

"yahoo!" if 3 > 2 else 2 #=> "yahoo!"



# Lists store sequences

# 列表用于存储序列

li = []

# You can start with a prefilled list

# 我们先尝试一个预先填充好的列表

other_li = [4, 5, 6]



# Add stuff to the end of a list with append

# 使用 append 方法把元素添加到列表的尾部

li.append(1)    #li is now [1]

                #li 现在是 [1]

li.append(2)    #li is now [1, 2]

                #li 现在是 [1, 2]

li.append(4)    #li is now [1, 2, 4]

                #li 现在是 [1, 2, 4]

li.append(3)    #li is now [1, 2, 4, 3]

                #li 现在是 [1, 2, 4, 3]

# Remove from the end with pop

# 使用 pop 来移除最后一个元素

li.pop()        #=> 3 and li is now [1, 2, 4]

                #=> 3,然后 li 现在是 [1, 2, 4]

# Let's put it back

# 我们再把它放回去

li.append(3)    # li is now [1, 2, 4, 3] again.

                # li 现在又是 [1, 2, 4, 3] 了



# Access a list like you would any array

# 像访问其它语言的数组那样访问列表

li[0] #=> 1

# Look at the last element

# 查询最后一个元素

li[-1] #=> 3



# Looking out of bounds is an IndexError

# 越界查询会产生一个索引错误

li[4] # Raises an IndexError

      # 抛出一个索引错误



# You can look at ranges with slice syntax.

# (It's a closed/open range for you mathy types.)

# 你可以使用切片语法来查询列表的一个范围。

# (这个范围相当于数学中的左闭右开区间。)

li[1:3] #=> [2, 4]

# Omit the beginning

# 省略开头

li[2:] #=> [4, 3]

# Omit the end

# 省略结尾

li[:3] #=> [1, 2, 4]



# Remove arbitrary elements from a list with del

# 使用 del 来删除列表中的任意元素

del li[2] # li is now [1, 2, 3]

          # li 现在是 [1, 2, 3]



# You can add lists

# 可以把列表相加

li + other_li #=> [1, 2, 3, 4, 5, 6] - Note: li and other_li is left alone

              #=> [1, 2, 3, 4, 5, 6] - 请留意 li 和 other_li 并不会被修改



# Concatenate lists with extend

# 使用 extend 来合并列表

li.extend(other_li) # Now li is [1, 2, 3, 4, 5, 6]

                    # 现在 li 是 [1, 2, 3, 4, 5, 6]



# Check for existence in a list with in

# 用 in 来检查是否存在于某个列表中

1 in li #=> True



# Examine the length with len

# 用 len 来检测列表的长度

len(li) #=> 6





# Tuples are like lists but are immutable.

# 元组很像列表,但它是“不可变”的。

tup = (1, 2, 3)

tup[0] #=> 1

tup[0] = 3  # Raises a TypeError

            # 抛出一个类型错误



# You can do all those list thingies on tuples too

# 操作列表的方式通常也能用在元组身上

len(tup) #=> 3

tup + (4, 5, 6) #=> (1, 2, 3, 4, 5, 6)

tup[:2] #=> (1, 2)

2 in tup #=> True



# You can unpack tuples (or lists) into variables

# 你可以把元组(或列表)中的元素解包赋值给多个变量

a, b, c = (1, 2, 3)     # a is now 1, b is now 2 and c is now 3

                        # 现在 a 是 1,b 是 2,c 是 3

# Tuples are created by default if you leave out the parentheses

# 如果你省去了小括号,那么元组会被自动创建

d, e, f = 4, 5, 6

# Now look how easy it is to swap two values

# 再来看看交换两个值是多么简单。

e, d = d, e     # d is now 5 and e is now 4

                # 现在 d 是 5 而 e 是 4





# Dictionaries store mappings

# 字典用于存储映射关系

empty_dict = {}

# Here is a prefilled dictionary

# 这是一个预先填充的字典

filled_dict = {"one": 1, "two": 2, "three": 3}



# Look up values with []

# 使用 [] 来查询键值

filled_dict["one"] #=> 1



# Get all keys as a list

# 将字典的所有键名获取为一个列表

filled_dict.keys() #=> ["three", "two", "one"]

# Note - Dictionary key ordering is not guaranteed.

# Your results might not match this exactly.

# 请注意:无法保证字典键名的顺序如何排列。

# 你得到的结果可能跟上面的示例不一致。



# Get all values as a list

# 将字典的所有键值获取为一个列表

filled_dict.values() #=> [3, 2, 1]

# Note - Same as above regarding key ordering.

# 请注意:顺序的问题和上面一样。



# Check for existence of keys in a dictionary with in

# 使用 in 来检查一个字典是否包含某个键名

"one" in filled_dict #=> True

1 in filled_dict #=> False



# Looking up a non-existing key is a KeyError

# 查询一个不存在的键名会产生一个键名错误

filled_dict["four"] # KeyError

                    # 键名错误



# Use get method to avoid the KeyError

# 所以要使用 get 方法来避免键名错误

filled_dict.get("one") #=> 1

filled_dict.get("four") #=> None

# The get method supports a default argument when the value is missing

# get 方法支持传入一个默认值参数,将在取不到值时返回。

filled_dict.get("one", 4) #=> 1

filled_dict.get("four", 4) #=> 4



# Setdefault method is a safe way to add new key-value pair into dictionary

# Setdefault 方法可以安全地把新的名值对添加到字典里

filled_dict.setdefault("five", 5) #filled_dict["five"] is set to 5

                                  #filled_dict["five"] 被设置为 5

filled_dict.setdefault("five", 6) #filled_dict["five"] is still 5

                                  #filled_dict["five"] 仍然为 5





# Sets store ... well sets

# set 用于保存集合

empty_set = set()

# Initialize a set with a bunch of values

# 使用一堆值来初始化一个集合

some_set = set([1,2,2,3,4]) # some_set is now set([1, 2, 3, 4])

                            # some_set 现在是 set([1, 2, 3, 4])



# Since Python 2.7, {} can be used to declare a set

# 从 Python 2.7 开始,{} 可以用来声明一个集合

filled_set = {1, 2, 2, 3, 4} # => {1, 2, 3, 4}

                             # (译注:集合是种无序不重复的元素集,因此重复的 2 被滤除了。)

                             # (译注:{} 不会创建一个空集合,只会创建一个空字典。)



# Add more items to a set

# 把更多的元素添加进一个集合

filled_set.add(5) # filled_set is now {1, 2, 3, 4, 5}

                  # filled_set 现在是 {1, 2, 3, 4, 5}



# Do set intersection with &

# 使用 & 来获取交集

other_set = {3, 4, 5, 6}

filled_set & other_set #=> {3, 4, 5}



# Do set union with |

# 使用 | 来获取并集

filled_set | other_set #=> {1, 2, 3, 4, 5, 6}



# Do set difference with -

# 使用 - 来获取补集

{1,2,3,4} - {2,3,5} #=> {1, 4}



# Check for existence in a set with in

# 使用 in 来检查是否存在于某个集合中

2 in filled_set #=> True

10 in filled_set #=> False





####################################################

## 3. Control Flow

## 3. 控制流

####################################################



# Let's just make a variable

# 我们先创建一个变量

some_var = 5



# Here is an if statement. Indentation is significant in python!

# prints "some_var is smaller than 10"

# 这里有一个条件语句。缩进在 Python 中可是很重要的哦!

# 程序会打印出 "some_var is smaller than 10"

# (译注:意为“some_var 比 10 小”。)

if some_var > 10:

    print "some_var is totally bigger than 10."

    # (译注:意为“some_var 完全比 10 大”。)

elif some_var < 10:    # This elif clause is optional.

                       # 这里的 elif 子句是可选的

    print "some_var is smaller than 10."

    # (译注:意为“some_var 比 10 小”。)

else:           # This is optional too.

                # 这一句也是可选的

    print "some_var is indeed 10."

    # (译注:意为“some_var 就是 10”。)





"""

For loops iterate over lists

for 循环可以遍历列表

prints:

如果要打印出:

    dog is a mammal

    cat is a mammal

    mouse is a mammal

"""

for animal in ["dog", "cat", "mouse"]:

    # You can use % to interpolate formatted strings

    # 别忘了你可以使用 % 来格式化字符串

    print "%s is a mammal" % animal

    # (译注:意为“%s 是哺乳动物”。)



"""

`range(number)` returns a list of numbers 

from zero to the given number

`range(数字)` 会返回一个数字列表,

这个列表将包含从零到给定的数字。

prints:

如果要打印出:

    0

    1

    2

    3

"""

for i in range(4):

    print i



"""

While loops go until a condition is no longer met.

while 循环会一直继续,直到条件不再满足。

prints:

如果要打印出:

    0

    1

    2

    3

"""

x = 0

while x < 4:

    print x

    x += 1  # Shorthand for x = x + 1

            # 这是 x = x + 1 的简写方式



# Handle exceptions with a try/except block

# 使用 try/except 代码块来处理异常



# Works on Python 2.6 and up:

# 适用于 Python 2.6 及以上版本:

try:

    # Use raise to raise an error

    # 使用 raise 来抛出一个错误

    raise IndexError("This is an index error")

    # 抛出一个索引错误:“这是一个索引错误”。

except IndexError as e:

    pass    # Pass is just a no-op. Usually you would do recovery here.

            # pass 只是一个空操作。通常你应该在这里做一些恢复工作。





####################################################

## 4. Functions

## 4. 函数

####################################################



# Use def to create new functions

# 使用 def 来创建新函数

def add(x, y):

    print "x is %s and y is %s" % (x, y)

    # (译注:意为“x 是 %s 而且 y 是 %s”。)

    return x + y    # Return values with a return statement

                    # 使用 return 语句来返回值



# Calling functions with parameters

# 调用函数并传入参数

add(5, 6) #=> prints out "x is 5 and y is 6" and returns 11

          # (译注:意为“x 是 5 而且 y 是 6”,并返回 11)



# Another way to call functions is with keyword arguments

# 调用函数的另一种方式是传入关键字参数

add(y=6, x=5)   # Keyword arguments can arrive in any order.

                # 关键字参数可以以任意顺序传入



# You can define functions that take a variable number of

# positional arguments

# 你可以定义一个函数,并让它接受可变数量的定位参数。

def varargs(*args):

    return args



varargs(1, 2, 3) #=> (1,2,3)





# You can define functions that take a variable number of

# keyword arguments, as well

# 你也可以定义一个函数,并让它接受可变数量的关键字参数。

def keyword_args(**kwargs):

    return kwargs



# Let's call it to see what happens

# 我们试着调用它,看看会发生什么:

keyword_args(big="foot", loch="ness") #=> {"big": "foot", "loch": "ness"}



# You can do both at once, if you like

# 你还可以同时使用这两类参数,只要你愿意:

def all_the_args(*args, **kwargs):

    print args

    print kwargs

"""

all_the_args(1, 2, a=3, b=4) prints:

    (1, 2)

    {"a": 3, "b": 4}

"""



# When calling functions, you can do the opposite of varargs/kwargs!

# Use * to expand tuples and use ** to expand kwargs.

# 在调用函数时,定位参数和关键字参数还可以反过来用。

# 使用 * 来展开元组,使用 ** 来展开关键字参数。

args = (1, 2, 3, 4)

kwargs = {"a": 3, "b": 4}

all_the_args(*args) # equivalent to foo(1, 2, 3, 4)

                    # 相当于 all_the_args(1, 2, 3, 4)

all_the_args(**kwargs) # equivalent to foo(a=3, b=4)

                       # 相当于 all_the_args(a=3, b=4)

all_the_args(*args, **kwargs) # equivalent to foo(1, 2, 3, 4, a=3, b=4)

                              # 相当于 all_the_args(1, 2, 3, 4, a=3, b=4)



# Python has first class functions

# 函数在 Python 中是一等公民

def create_adder(x):

    def adder(y):

        return x + y

    return adder



add_10 = create_adder(10)

add_10(3) #=> 13



# There are also anonymous functions

# 还有匿名函数

(lambda x: x > 2)(3) #=> True



# There are built-in higher order functions

# 还有一些内建的高阶函数

map(add_10, [1,2,3]) #=> [11, 12, 13]

filter(lambda x: x > 5, [3, 4, 5, 6, 7]) #=> [6, 7]



# We can use list comprehensions for nice maps and filters

# 我们可以使用列表推导式来模拟 map 和 filter

[add_10(i) for i in [1, 2, 3]]  #=> [11, 12, 13]

[x for x in [3, 4, 5, 6, 7] if x > 5] #=> [6, 7]



####################################################

## 5. Classes

## 5. 类

####################################################



# We subclass from object to get a class.

# 我们可以从对象中继承,来得到一个类。

class Human(object):



    # A class attribute. It is shared by all instances of this class

    # 下面是一个类属性。它将被这个类的所有实例共享。

    species = "H. sapiens"



    # Basic initializer

    # 基本的初始化函数(构建函数)

    def __init__(self, name):

        # Assign the argument to the instance's name attribute

        # 把参数赋值为实例的 name 属性

        self.name = name



    # An instance method. All methods take self as the first argument

    # 下面是一个实例方法。所有方法都以 self 作为第一个参数。

    def say(self, msg):

       return "%s: %s" % (self.name, msg)



    # A class method is shared among all instances

    # They are called with the calling class as the first argument

    # 类方法会被所有实例共享。

    # 类方法在调用时,会将类本身作为第一个函数传入。

    @classmethod

    def get_species(cls):

        return cls.species



    # A static method is called without a class or instance reference

    # 静态方法在调用时,不会传入类或实例的引用。

    @staticmethod

    def grunt():

        return "*grunt*"





# Instantiate a class

# 实例化一个类

i = Human(name="Ian")

print i.say("hi")     # prints out "Ian: hi"

                      # 打印出 "Ian: hi"



j = Human("Joel")

print j.say("hello")  # prints out "Joel: hello"

                      # 打印出 "Joel: hello"



# Call our class method

# 调用我们的类方法

i.get_species() #=> "H. sapiens"



# Change the shared attribute

# 修改共享属性

Human.species = "H. neanderthalensis"

i.get_species() #=> "H. neanderthalensis"

j.get_species() #=> "H. neanderthalensis"



# Call the static method

# 调用静态方法

Human.grunt() #=> "*grunt*"





####################################################

## 6. Modules

## 6. 模块

####################################################



# You can import modules

# 你可以导入模块

import math

print math.sqrt(16) #=> 4



# You can get specific functions from a module

# 也可以从一个模块中获取指定的函数

from math import ceil, floor

print ceil(3.7)  #=> 4.0

print floor(3.7) #=> 3.0



# You can import all functions from a module.

# Warning: this is not recommended

# 你可以从一个模块中导入所有函数

# 警告:不建议使用这种方式

from math import *



# You can shorten module names

# 你可以缩短模块的名称

import math as m

math.sqrt(16) == m.sqrt(16) #=> True



# Python modules are just ordinary python files. You

# can write your own, and import them. The name of the 

# module is the same as the name of the file.

# Python 模块就是普通的 Python 文件。

# 你可以编写你自己的模块,然后导入它们。

# 模块的名称与文件名相同。



# You can find out which functions and attributes

# defines a module.

# 你可以查出一个模块里有哪些函数和属性

import math

dir(math)





Ready For More?

还没过瘾吗?

Free Online

免费在线阅读

Dead Tree

实体书

转自 https://github.com/cssmagic/blog/issues/24 

吐槽。。什么程序都能分分钟学会了那还要程序猿干毛啊。。要说的话他这分分钟能实现的我c也能实现为什么一定要用PYTHON呢?

你可能感兴趣的:(python)