pytorch模型的保存与加载

1 pytorch保存和加载模型的三种方法

PyTorch提供了三种方式来保存和加载模型,在这三种方式中,加载模型的代码和保存模型的代码必须相匹配,才能保证模型的加载成功。通常情况下,使用第一种方式(保存和加载模型状态字典)更加常见,因为它更轻量且不依赖于特定的模型类。

1.1 仅保存和加载模型参数(推荐)

1.1.1 保存模型参数

import torch
import torch.nn as nn

model = nn.Sequential(nn.Linear(128, 16), nn.ReLU(), nn.Linear(16, 1))

# 保存整个模型
torch.save(model.state_dict(), 'sample_model.pt')

1.1.2 加载模型参数

import torch
import torch.nn as nn

# 下载模型参数 并放到模型中
loaded_model = nn.Sequential(nn.Linear(128, 16), nn.ReLU(), nn.Linear(16, 1))
loaded_model.load_state_dict(torch.load('sample_model.pt'))
print(loaded_model)

显示如下:

Sequential(
  (0): Linear(in_features=128, out_features=16, bias=True)
  (1): ReLU()
  (2): Linear(in_features=16, out_features=1, bias=True)
)

net.state_dict(),在PyTorch中,Module 的可学习参数 (即权重和偏差),模块模型包含在参数中 (通过 model.parameters() 访问)。state_dict 是一个从参数名称隐射到参数 Tesnor 的有序字典对象。只有具有可学习参数的层(卷积层、线性层等) 才有 state_dict 中的条目。

1.2 保存和加载整个模型

1.2.1 保存整个模型

import torch
import torch.nn as nn

net = nn.Sequential(nn.Linear(128, 16), nn.ReLU(), nn.Linear(16, 1))

# 保存整个模型,包含模型结构和参数
torch.save(net, 'sample_model.pt')

1.2.2  加载整个模型

import torch
import torch.nn as nn

# 加载整个模型,包含模型结构和参数
loaded_model = torch.load('sample_model.pt')
print(loaded_model)

显示如下:

Sequential(
  (0): Linear(in_features=128, out_features=16, bias=True)
  (1): ReLU()
  (2): Linear(in_features=16, out_features=1, bias=True)
)

1.3 导出和加载ONNX格式模型

1.3.1 保存模型

import torch
import torch.nn as nn

model = nn.Sequential(nn.Linear(128, 16), nn.ReLU(), nn.Linear(16, 1))

input_sample = torch.randn(16, 128)  # 提供一个输入样本作为示例
torch.onnx.export(model, input_sample, 'sample_model.onnx')

1.3.2 加载模型

import torch
import torch.nn as nn
import onnx
import onnxruntime

loaded_model = onnx.load('sample_model.onnx')
session = onnxruntime.InferenceSession('sample_model.onnx')
print(session)

2 模型保存与加载使用的函数

2.1 保存模型函数torch.save

将对象序列化保存到磁盘中,该方法原理是基于python中的pickle来序列化,各种Models,tensors,dictionaries 都可以使用该方法保存。保存的模型文件名可以是.pth, .pt, .pkl

def save(
    obj: object,
    f: FILE_LIKE,
    pickle_module: Any = pickle,
    pickle_protocol: int = DEFAULT_PROTOCOL,
    _use_new_zipfile_serialization: bool = True
) -> None:
  • obj:保存的对象
  • f:一个类似文件的对象(必须实现写入和刷新)或字符串或操作系统。包含文件名的类似路径对象
  • pickle_module:用于挑选元数据和对象的模块
  • pickle_protocol:可以指定以覆盖默认协议

备注:关于模型的后缀.pt、.pth、.pkl它们并不存在格式上的区别,只是后缀名不同而已。 torch.save()语句保存出来的模型文件没有什么不同。

2.2 加载模型函数torch.load

def load(
    f: FILE_LIKE,
    map_location: MAP_LOCATION = None,
    pickle_module: Any = None,
    *,
    weights_only: bool = False,
    **pickle_load_args: Any
) -> Any:
  • f:类文件对象 (返回文件描述符)或一个保存文件名的字符串
  • map_location:一个函数或字典规定如何映射存储设备,torch.device对象
  • pickle_module:用于 unpickling 元数据和对象的模块 (必须匹配序列化文件时的 pickle_module )

2.3 加载模型参数torch.nn.Module.load_state_dict

序列化 (Serialization)是将对象的状态信息转换为可以存储或传输的形式的过程。 在序列化期间,对象将其当前状态写入到临时或持久性存储区。以后,可以通过从存储区中读取或反序列化对象的状态,重新创建该对象。

def load_state_dict(self, state_dict: 'OrderedDict[str, Tensor]',
                        strict: bool = True):
  • state_dict:保存 parameters 和 persistent buffers 的字典
  • strict:可选,bool型。state_dict 中的 key 是否和 model.state_dict() 返回的 key 一致。

2.4 状态字典state_dict

函数作用是“获取优化器当前状态信息字典”,在神经网络中模型上训练出来的模型参数,也就是权重和偏置值。在Pytorch中,定义网络模型是通过继承torch.nn.Module来实现的。其网络模型中包含可学习的参数(weights, bias, 和一些登记的缓存如batchnorm’s running_mean 等)。模型内部的可学习参数可通过两种方式进行调用:

  • 通过model.parameters()这个生成器来访问所有参数。
  • 通过model.state_dict()来为每一层和它的参数建立一个映射关系并存储在字典中,其键值由每个网络层和其对应的参数张量构成。
def state_dict(self, destination=None, prefix='', keep_vars=False):

除模型外,优化器对象(torch.optim)同样也有一个状态字典,包含的优化器状态信息以及使用的超参数。由于状态字典属于Python 字典,因此对 PyTorch 模型和优化器的保存、更新、替换、恢复等操作都比较便捷。

3 指定map_location加载模型

采用仅加载模型参数的方式,指定设备类型进行模型加载,代码如下:

model_path = '/opt/sample_model.pth'

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
map_location = torch.device(device)

model.load_state_dict(torch.load(self.model_path, map_location=self.map_location))

你可能感兴趣的:(深度学习之pytorch,pytorch,人工智能,python)