- 《机器学习》—— XGBoost(xgb.XGBClassifier) 分类器
张小生180
机器学习人工智能
文章目录一、XGBoost分类器的介绍二、XGBoost(xgb.XGBClassifier)分类器与随机森林分类器(RandomForestClassifier)的区别三、XGBoost(xgb.XGBClassifier)分类器代码使用示例一、XGBoost分类器的介绍XGBoost分类器是一种基于梯度提升决策树(GradientBoostingDecisionTree,GBDT)的集成学习算
- 加州房价--决策树与随机森林
一把年纪学编程
五决策树随机森林机器学习
需要新装包'''decisionTree写在前面要安装http://www.graphviz.org/download/测试是否安装成功dot-version修改环境变量pipinstallgraphviz提示:Successfullyinstalledgraphviz-0.20pipinstallpydotplus'''#===================================im
- Spark MLlib模型训练—回归算法 Random forest regression
不二人生
SparkML实战spark-ml回归随机森林
SparkMLlib模型训练—回归算法Randomforestregression随机森林回归(RandomForestRegression)是一种集成学习方法,通过结合多个决策树的预测结果来提升模型的准确性和稳健性。相较于单一的决策树模型,随机森林通过随机采样和多棵树的集成,减少了模型的方差,从而在处理复杂数据集时展现出更好的性能。本文将详细介绍随机森林回归的原理、实现方法、应用场景,并通过Sc
- Python中sklearn实现随机森林RF回归与变量重要性影响程度排序分析
疯狂学习GIS
本文详细介绍在Python中,实现随机森林(RandomForest,RF)回归与变量重要性分析、排序的代码编写与分析过程。其中,关于基于MATLAB实现同样过程的代码与实战,大家可以点击查看这篇博客1(https://blog.csdn.net/zhebushibiaoshifu/article/details/114806478)。 本文分为两部分,第一部分为代码的分段讲解,第二部分为完
- 机器学习基础(四)——决策树与随机森林
Bayesian小孙
机器学习基础决策树机器学习随机森林
决策树与随机森林文章目录决策树与随机森林一、知识概要(一)二、决策树使用的算法三、sklearn决策树API四、决策树的案例1.数据清洗2.特征工程3.调用决策树API五、集成学习方法-随机森林1.知识概要(二)2.集成学习API3.随机森林的案例importpandasaspdfromsklearn.feature_extractionimportDictVectorizerfromsklear
- 机器学习 之 决策树与随机森林的实现
SEVEN-YEARS
机器学习决策树随机森林
引言随着互联网技术的发展,垃圾邮件过滤已成为一项重要的任务。机器学习技术,尤其是决策树和随机森林,在解决这类问题时表现出色。本文将介绍随机森林的基本概念,并通过一个具体的案例——筛选垃圾电子邮件——来展示随机森林的实际应用。随机森林简介随机森林是一种基于决策树的集成学习方法,它通过构建多个决策树并综合它们的预测结果来提高准确性和防止过拟合。随机森林的工作原理主要包括以下几个步骤:自助采样:从原始数
- 每天一个数据分析题(五百零五)- 提升方法
跟着紫枫学姐学CDA
数据分析题库数据分析
提升方法(Boosting),是一种可以用来减小监督式学习中偏差的机器学习算法。基于Boosting的集成学习,其代表算法不包括?A.AdaboostB.GBDTC.XGBOOSTD.随机森林数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据
- 每天一个数据分析题(五百零六)- 装袋方法
跟着紫枫学姐学CDA
数据分析数据挖掘
装袋方法(bagging)也叫做bootstrapaggregating,是在原始数据集有放回地重采样S次后得到新数据集的一种技术,其代表算法有?A.AdaboostB.GBDTC.XGBOOSTD.随机森林数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专
- 随机森林(Random Forest)VS 提升树(Boosting Trees)
高大黑白涂鸦
随机森林boosting算法机器学习人工智能
随机森林(RandomForest)和提升树(BoostingTrees)都是常见的机器学习算法,它们都基于决策树,但使用的策略和目标不同。随机森林(RandomForest)通俗的类比:想象你有一个班级里的多位老师(决策树),你让他们每个人都独立地给出意见(预测)。每个老师的意见可能不完全一致,因为他们对问题的理解和方法不同。然后,你把所有老师的意见汇总,得到一个“班级意见”的结果。优点:减少过
- 代谢组数据分析(十八):随机森林构建代谢组诊断模型
生信学习者2
代谢组分析数据分析随机森林数据挖掘
介绍使用随机森林算法和LASSO特征选择构建了一种胃癌(GC)诊断预测模型。参与者(队列1,n=426)通过随机分层抽样分为发现数据集(n=284)和测试集(n=142)。接下来,在发现数据集上执行LASSO回归,以选择能够识别胃癌患者的较少数量的特征。我们将L1约束的系数设置为0.01,并根据10,000次随机交叉验证的平均误分类误差选择了十个非零系数的特征。在发现数据集上使用引导聚合方法训练了
- 《菜菜的机器学习sklearn课堂》随机森林应用泛化误差调参实例
2401_83977689
程序员机器学习sklearn随机森林
clf=DecisionTreeClassifier()clf_s=cross_val_score(clf,wine.data,wine.target,cv=10)plt.plot(range(1,11),rfc_s,label=“RandomForest”)plt.plot(range(1,11),clf_s,label=“DecisionTree”)plt.legend()plt.show()
- python库——sklearn的关键组件和参数设置
零 度°
pythonpythonsklearn
文章目录模型构建线性回归逻辑回归决策树分类器随机森林支持向量机K-近邻模型评估交叉验证性能指标特征工程主成分分析标准化和归一化scikit-learn,简称sklearn,是Python中一个广泛使用的机器学习库,它建立在NumPy、SciPy和Matplotlib这些科学计算库之上。sklearn提供了简单而有效的工具来进行数据挖掘和数据分析。我们将介绍sklearn中一些关键组件的参数设置。模
- 决策树与随机森林:比较与应用场景分析
范范0825
决策树随机森林算法
决策树与随机森林:比较与应用场景分析引言决策树和随机森林是机器学习中广泛使用的两种算法,因其简单性和强大的功能而被广泛采用。决策树是一种树形结构的决策模型,易于理解和解释。随机森林则是通过集成多棵决策树来提高预测性能的模型。在本文中,我们将深入比较决策树与随机森林,探讨它们的工作原理、优缺点、应用场景,并通过具体的代码示例展示如何在实际问题中应用这些算法。目录决策树概述决策树的定义决策树的构建决策
- 随机森林学习笔记概述
好好学习的不知名程序员
随机森林学习笔记
随机森林(RandomForest)是一种集成学习方法,它通过构建多个决策树并将它们的预测结果进行投票或平均来提高预测性能。随机森林在许多实际应用中表现出了很好的性能,尤其是在分类和回归问题上。以下是关于随机森林的一些学习笔记概述:1.基本概念集成学习:通过组合多个弱学习器来提高预测性能的方法。决策树:一种基本的分类和回归方法,通过递归地将数据集分割成不同的子集来构建树形结构。随机森林:由多个决策
- 基于R语言遥感随机森林建模与空间预测
weixin_贾
统计语言类模型分布式
随机森林作为一种集成学习方法,在处理复杂数据分析任务中特别是遥感数据分析中表现出色。通过构建大量的决策树并引入随机性,随机森林在降低模型方差和过拟合风险方面具有显著优势。在训练过程中,使用Bootstrap抽样生成不同的训练集,并在节点分裂时随机选择特征子集,这使得模型具备了处理高维和非线性数据的能力。随机森林对噪声和异常值具有鲁棒性,其预测结果通过对多棵树的集成投票或平均获得,减少了单个异常对结
- 随机森林原理&sklearn实现
一稻道人
机器学习算法&预测模型Python随机森林sklearn算法
原理定义随机森林就是通过集成学习的思想将多棵树集成的一种算法,它的基本单元是决策树,而它的本质属于机器学习的一大分支——集成学习(EnsembleLearning)方法。随机森林的名称中有两个关键词,一个是“随机”,一个就是“森林”。随机森林应该是机器学习算法时最先接触到的集成算法,集成学习的家族:Bagging:个体评估器之间不存在强依赖关系,一系列个体学习器可以并行生成。代表算法:随机森林(R
- MATLAB|【免费】概率神经网络的分类预测--基于PNN的变压器故障诊断
电力程序小学童
机器预测matlab神经网络分类预测
目录主要内容部分代码结果一览下载链接主要内容《MATLAB神经网络43个案例分析》共有43章,内容涵盖常见的神经网络(BP、RBF、SOM、Hopfield、Elman、LVQ、Kohonen、GRNN、NARX等)以及相关智能算法(SVM、决策树、随机森林、极限学习机等)。同时,部分章节也涉及了常见的优化算法(遗传算法、蚁群算法等)与神经网络的结合问题。此外,《MATLAB神经网络43个案例分析
- MATLAB进行特征选择
AI Dog
数学建模\MATLABmatlab数学建模数据挖掘特征选择特征提取
特征选择是机器学习和统计建模中的重要步骤,它涉及选择最相关、最有信息价值的特征,以提高模型性能、降低过拟合风险,并加速训练过程。以下是一些常见的特征选择方法:(1)方差选择法计算各个特征的方差,然后根据阈值,选择方差大于阈值的特征作为筛选出来的特征。这里是针对于各个变量独立地进行方差计算,然后按照方差大小对特征进行降序排列,保留前几个方差较大的变量。(2)随机森林特征重要度随机森林由多个决策树构成
- 深度学习与机器学习的关系
数字化信息化智能化解决方案
深度学习机器学习人工智能
深度学习和机器学习的关系深度学习是机器学习的一个子领域,专注于使用神经网络,特别是深度神经网络(DNN)来解决各种问题。可以说,深度学习是机器学习的一种方法或技术。两者都致力于通过从数据中提取有用的信息或模式来自动改进算法的性能。机器学习涵盖了更广泛的算法和技术,包括决策树、支持向量机、随机森林、聚类算法等,而深度学习则专注于神经网络和相关的优化技术。优缺点比较机器学习:优点:通用性:机器学习算法
- 机器学习网格搜索超参数优化实战(随机森林) ##4
恒c
机器学习随机森林人工智能
文章目录基于Kaggle电信用户流失案例数据(可在官网进行下载)数据预处理模块时序特征衍生第一轮网格搜索第二轮搜索第三轮搜索第四轮搜索第五轮搜索基于Kaggle电信用户流失案例数据(可在官网进行下载)导入库#基础数据科学运算库importnumpyasnpimportpandasaspd#可视化库importseabornassnsimportmatplotlib.pyplotasplt#时间模块
- 常用的模型集成方法介绍:bagging、boosting 、stacking
weixin_30585437
人工智能c/c++数据结构与算法
本文介绍了集成学习的各种概念,并给出了一些必要的关键信息,以便读者能很好地理解和使用相关方法,并且能够在有需要的时候设计出合适的解决方案。本文将讨论一些众所周知的概念,如自助法、自助聚合(bagging)、随机森林、提升法(boosting)、堆叠法(stacking)以及许多其它的基础集成学习模型。为了使所有这些方法之间的联系尽可能清晰,我们将尝试在一个更广阔和逻辑性更强的框架中呈现它们,希望这
- GEE:关于在GEE平台上进行回归计算的若干问题
_养乐多_
GEEGEEjavascript遥感图像处理云计算回归
作者:CSDN@_养乐多_记录一些在GoogleEarthEngine(GEE)平台上进行机器学习回归计算的问题和解释。文章目录一、回归1.1问:GEE平台上可以进行哪些机器学习回归算法?1.2问:为什么只有这四种?哪个精度高?1.3问:GEE上能否运行深度学习算法?一、回归1.1问:GEE平台上可以进行哪些机器学习回归算法?答:GEE平台上有四种机器学习回归算法,分别是随机森林回归、CART(C
- AI算法初识之分类汇总
初心不忘产学研
人工智能算法大数据机器学习深度学习
一、背景AI算法的分类方式多种多样,可以根据不同的学习机制、功能用途以及模型结构进行划分。以下是一些主要的分类方式及相应的代表性算法:1.按照学习类型-**监督学习**:-线性回归(LinearRegression)-逻辑回归(LogisticRegression)-决策树(DecisionTree)-随机森林(RandomForest)-支持向量机(SupportVectorMachines,S
- 机器学习4----随机森林
pyniu
机器学习机器学习随机森林人工智能
importnumpyasnpimportpandasaspdfromsklearn.datasetsimportload_irisdata,target=load_iris(return_X_y=True)data.shapedatafromsklearn.model_selectionimporttrain_test_splitx_train,x_test,y_train,y_test=tra
- FEELnc: LncRNA注释工具
小潤澤
简介这是一款2017年发表在NAR上的注释LncRNA的工具,FEELnc:atoolforlongnon-codingRNAannotationanditsapplicationtothedogtranscriptome,该软件基于随机森林二分类器来对LncRNA与mRNA进行分类预测模块FEELnc主要的工作模块分为3个,分别是:1.FEELnc_filter.pl;2.FEELnc_codp
- 介绍一款单细胞细胞类型注释软件-scibet
生信阿拉丁
作者:童蒙编辑:amethyst引言随着技术的进步,测序成本的降低,单细胞转录组的数据呈指数级的爆发。许多组织都发布了关于详细的单细胞图谱计划,例如小鼠单细胞开源数据库TabulaMuris,小鼠器官发生细胞图谱MOCA,人类细胞图谱HCA等。之前注释和分类方法大多是根据机器学习的非监督聚类的方法,例如随机森林(RF)或者支持向量机(SVM),这些工具耗时长,计算资源消耗大。因此,使用已有标注的数
- 机器学习--有监督--GBM(Boosting)
小贝学生信
集成学习(ensemblelearning)是采用多个机器学习模型组合进行综合预测,从而提升模型性能的思路,分为bagging与boosting两种。之前学习的随机森林便是bagging的典型代表;而本次学习Gradientboostingmachines为代表的boosting则是另一种集成思路。此外,集成学习使用的基学习器模型一般都是决策树(decisiontree)。1、bagging与bo
- R语言分类回归决策树交互式修剪和更美观地可视化分析细胞图像分割数据集
拓端研究室
R语言机器学习r语言分类回归
最近我们被客户要求撰写关于决策树的研究报告,包括一些图形和统计输出。绘制分类或回归树的基本方法的rpart()函数只是调用plot。然而,总的来说,结果并不漂亮。事实证明,一段时间以来,有一种更好的方法来绘制rpart()树。我们可以大概浏览下如何实现,并且进一步研究。视频:从决策树到随机森林:R语言信用卡违约分析信贷数据实例从决策树到随机森林:R语言信用卡违约分析信贷数据实例,时长10:11#绘
- 智慧海洋建设-Task4模型建立
1598903c9dd7
模型建立:bagging方法--随机森林:太耗时间了。boosting方法:lightGBM模型:https://blog.csdn.net/wuzhongqiang/article/details/105350579Xgboost模型:https://blog.csdn.net/wuzhongqiang/article/details/104854890集成模型集成方法(ensemblemeth
- R语言用随机森林模型的酒店收入和产量预测误差分析
数据挖掘深度学习人工智能算法
全文链接:https://tecdat.cn/?p=35162在这篇文章中,我们将探讨基于随机森林模型的酒店收入和产量预测分析。我们将使用4月9日至4月15日的数据作为测试集,评估预测的准确度。我们将分别对单个酒店在三个预订渠道的总收入和总产量进行分析,并使用随机森林模型进行预测。通过对比每家酒店的间夜预测值(或收入)与实际值的结果,以及产量排名前四分之一酒店的平均误差值,我们将得出对酒店收入和产
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源