目录
接口的概念
语法规则
提示
接口使用
示例
接口特性
1. 接口类型是一种引用类型,但是不能直接new接口的对象
2. 接口中每一个方法都是public的抽象方法
3. 接口中的方法是不能在接口中实现的,只能由实现接口的类来实现
4. 重写接口中方法时,不能使用默认的访问权限
5. 接口中可以含有变量
6. 接口中不能有静态代码块和构造方法
7. 接口虽然不是类,但是接口编译完成后字节码文件的后缀格式也是.class
8. 如果类没有实现接口中的所有的抽象方法,则类必须设置为抽象类
9. jdk8中:接口中还可以包含default方法。
编辑
实现多个接口
接口间的继承
接口使用实例
给对象数组排序
注意事项:
模拟实现sort方法
Clonable 接口和深拷贝
浅拷贝 VS 深拷贝
浅拷贝
深拷贝
抽象类和接口的区别
注意
Object类
获取对象信息
对象比较equals方法
结论:
hashcode方法
注意事项:
结论:
总结
在现实生活中,接口的例子比比皆是,比如:笔记本上的USB口
电脑的USB口上,可以插:U盘、鼠标、键盘...所有符合USB协议的设备
电源插座插孔上,可以插:电脑、电视机、电饭煲...所有符合规范的设备
通过上述例子可以看出:
接口就是公共的行为规范标准,大家在实现时,只要符合规范标准,就可以通用。在Java中,接口可以看成是:多个类的公共规范,是一种引用数据类型。
接口的定义格式与定义类的格式基本相同,将class关键字换成 interface 关键字,就定义了一个接口
public interface 接口名称{
// 抽象方法
public abstract void method1(); // public abstract 是固定搭配,可以不写
public void method2();
abstract void method3();
void method4();
// 注意:在接口中上述写法都是抽象方法,跟推荐方式4,代码更简洁
}
1. 创建接口时, 接口的命名一般以大写字母 I 开头.
2. 接口的命名一般使用 "形容词" 词性的单词.
3. 阿里编码规范中约定, 接口中的方法和属性不要加任何修饰符号, 保持代码的简洁性
接下来我们来看一看接口的简单实现
接口不能直接使用,必须要有一个"实现类"来"实现"该接口,实现接口中的所有抽象方法
public class 类名称 implements 接口名称{
// ...
}
注意:子类和父类之间是extends 继承关系,类与接口之间是 implements 实现关系。
实现笔记本电脑使用USB鼠标、USB键盘的例子
1. USB接口:包含打开设备、关闭设备功能
2. 笔记本类:包含开机功能、关机功能、使用USB设备功能
3. 鼠标类:实现USB接口,并具备点击功能
4. 键盘类:实现USB接口,并具备输入功能
首先我们定义一个抽象类,里面包含打开和关闭的方法,也就是实现USB接口
// USB接口
public interface USB {
void openDevice();
void closeDevice();
}
接下来我们实现鼠标类,实现USB接口;
1、我们需要多接口内的方法进行重写,变成所对应类的方法
2、实现该类特有的方法
public class Mouse implements USB {
@Override
public void openDevice() {
System.out.println("打开鼠标");
}
@Override
public void closeDevice() {
System.out.println("关闭鼠标");
}
public void click(){
System.out.println("鼠标点击");
}
}
然后实现键盘类,实现USB接口;
1、我们依旧需要多接口内的方法进行重写,变成所对应类的方法
2、实现该类特有的方法
public class KeyBoard implements USB {
@Override
public void openDevice() {
System.out.println("打开键盘");
}
@Override
public void closeDevice() {
System.out.println("关闭键盘");
}
public void inPut(){
System.out.println("键盘输入");
}
}
我们的键盘和鼠标都要依赖笔记本电脑来使用,所以接下来我们写
笔记本类:使用USB设备
public class Computer {
public void powerOn(){
System.out.println("打开笔记本电脑");
}
public void powerOff(){
System.out.println("关闭笔记本电脑");
}
public void useDevice(USB usb){
usb.openDevice();
if(usb instanceof Mouse) {
Mouse mouse = (Mouse)usb;
mouse.click();//向下转型,调用鼠标类独有的方法
}else if(usb instanceof KeyBoard) {
KeyBoard keyBoard = (KeyBoard)usb;
keyBoard.inPut();//向下转型,调用键盘独有的方法
}
usb.closeDevice();
}
}
这里又有一个关键字instanceof
instanceof是Java中的二元运算符,用于测试左边对象是否是右边类的实例,返回boolean的数据类型。
这里用于防止向下转型的不安全性
最后我们书写一个测试类,实现整个流程
public class TestUsb {
public static void main(String[] args) {
Computer computer = new Computer();
// 打开电脑
computer.powerOn();
// 使用鼠标设备
computer.useDevice(new Mouse());
// 使用键盘设备
computer.useDevice(new KeyBoard());
// 关闭电脑
computer.powerOff();
}
执行结果如下
以上就是接口的一个简单实现,接下来我们看看接口具有哪些特性吧
public class TestUSB {
public static void main(String[] args) {
USB usb = new USB();
}
}
// Error:(10, 19) java: day20210915.USB是抽象的; 无法实例化
即接口中的方法会被隐式的指定为 public abstract(只能是public abstract,其他修饰符都会报错
public interface USB {
// Error:(4, 18) java: 此处不允许使用修饰符private
private void openDevice();
void closeDevice();
}
public interface USB {
void openDevice();
// 编译失败:因为接口中的方式默认为抽象方法
// Error:(5, 23) java: 接口抽象方法不能带有主体
void closeDevice(){
System.out.println("关闭USB设备");
}
}
public interface USB {
void openDevice(); // 默认是public的
void closeDevice(); // 默认是public的
}
public class Mouse implements USB {
@Override
void openDevice() {
System.out.println("打开鼠标");
}
// ...
}
// 编译报错,重写USB中openDevice方法时,不能使用默认修饰符
// 正在尝试分配更低的访问权限; 以前为public
但是接口中的变量会被隐式的指定为 public static final 变量
public interface USB {
double brand = 3.0; // 默认被:final public static修饰
void openDevice();
void closeDevice();
}
public class TestUSB {
public static void main(String[] args) {
System.out.println(USB.brand); // 可以直接通过接口名访问,说明是静态的
// 编译报错:Error:(12, 12) java: 无法为最终变量brand分配值
USB.brand = 2.0; // 说明brand具有final属性
}
}
public interface USB {
// 编译失败
public USB(){
}
// 编译失败
{
}
void openDevice();
void closeDevice();
}
在Java中,类和类之间是单继承的,一个类只能有一个父类,即Java中不支持多继承,但是一个类可以实现多个接口。下面通过类来表示一组动物
class Animal {
protected String name;
public Animal(String name) {
this.name = name;
}
}
另外我们再提供一组接口, 分别表示 "会飞的", "会跑的", "会游泳的"
interface IFlying {
void fly();
}
interface IRunning {
void run();
}
interface ISwimming {
void swim();
}
接下来我们创建几个具体的动物
猫, 是会跑的
class Cat extends Animal implements IRunning {
public Cat(String name) {
super(name);
}
@Override
public void run() {
System.out.println(this.name + "正在用四条腿跑");
}
}
鱼, 是会游的
class Fish extends Animal implements ISwimming {
public Fish(String name) {
super(name);
}
@Override
public void swim() {
System.out.println(this.name + "正在用尾巴游泳");
}
}
青蛙, 既能跑, 又能游(两栖动物)
class Frog extends Animal implements IRunning, ISwimming {
public Frog(String name) {
super(name);
}
@Override
public void run() {
System.out.println(this.name + "正在往前跳");
}
@Override
public void swim() {
System.out.println(this.name + "正在蹬腿游泳");
}
}
注意:一个类实现多个接口时,每个接口中的抽象方法都要实现,否则类必须设置为抽象类
在博主所使用的IDEA上,可以使用Ctrl+i实现快速接口
还有一种神奇的动物, 水陆空三栖, 叫做 "鸭子"
class Duck extends Animal implements IRunning, ISwimming, IFlying {
public Duck(String name) {
super(name);
}
@Override
public void fly() {
System.out.println(this.name + "正在用翅膀飞");
}
@Override
public void run() {
System.out.println(this.name + "正在用两条腿跑");
}
@Override
public void swim() {
System.out.println(this.name + "正在漂在水上");
}
}
上面的代码展示了 Java 面向对象编程中最常见的用法: 一个类继承一个父类, 同时实现多种接口.
继承表达的含义是 is - a 语义, 而接口表达的含义是 具有 xxx 特性
猫是一种动物, 具有会跑的特性.
青蛙也是一种动物, 既能跑, 也能游泳
鸭子也是一种动物, 既能跑, 也能游, 还能飞
这样设计有什么好处呢? 时刻牢记多态的好处, 让程序⚪忘记类型.
有了接口之后, 类的使用者就不必关注具体类型,而只关注某个类是否具备某种能力.
例如, 现在实现一个方法, 叫 "散步"
public static void walk(IRunning running) {
System.out.println("我带着伙伴去散步");
running.run();
}
在这个 walk 方法内部, 我们并不关注到底是哪种动物, 只要参数是会跑的, 就行
Cat cat = new Cat("小猫");
walk(cat);
Frog frog = new Frog("小青蛙");
walk(frog);
// 执行结果
我带着伙伴去散步
小猫正在用四条腿跑
我带着伙伴去散步
小青蛙正在往前跳
甚至参数可以不是 "动物", 只要会跑!
class Robot implements IRunning {
private String name;
public Robot(String name) {
this.name = name;
}
@Override
public void run() {
System.out.println(this.name + "正在用轮子跑");
}
}
Robot robot = new Robot("机器人");
walk(robot);
// 执行结果
机器人正在用轮子跑
在Java中,类和类之间是单继承的,一个类可以实现多个接口,接口与接口之间可以多继承。即:用接口可以达到多继承的目的。接口可以继承一个接口, 达到复用的效果. 使用 extends 关键字
例如
nterface IRunning {
void run();
}
interface ISwimming {
void swim();
}
// 两栖的动物, 既能跑, 也能游
interface IAmphibious extends IRunning, ISwimming {
}
class Frog implements IAmphibious {
...
}
通过接口继承创建一个新的接口 IAmphibious 表示 "两栖的". 此时实现接口创建的 Frog 类, 就继续要实现 run 方法, 也需要实现 swim 方法.
总结:
接口间的继承相当于把多个接口合并在一起
比如我现在有一个学生类
class Student {
private String name;
private int score;
public Student(String name, int score) {
this.name = name;
this.score = score;
}
@Override
public String toString() { //重写toString方法,方便后续使用
return "[" + this.name + ":" + this.score + "]";
}
}
再给定一个学生对象数组, 对这个对象数组中的元素进行排序(按分数降序).
Student[] students = new Student[] {
new Student("张三", 95),
new Student("李四", 96),
new Student("王五", 97),
new Student("赵六", 92),
};
按照我们之前的理解, 数组我们有一个现成的 sort 方法, 能否直接使用这个方法呢?
Arrays.sort(students);
System.out.println(Arrays.toString(students));
// 运行出错, 抛出异常.
Exception in thread "main" java.lang.ClassCastException: Student cannot be cast to java.lang.Comparable
仔细思考, 不难发现, 和普通的整数不一样, 两个整数是可以直接比较的, 大小关系明确. 而两个学生
对象的大小关系怎么确定? 需要我们额外指定
我们发现Arrays.sort的实现主要靠Comparable 接口进行实现,并实现了其中的 compareTo 方法
同理让我们的 Student 类实现 Comparable 接口, 并实现其中的 compareTo 方法
class Student implements Comparable {
private String name;
private int score;
public Student(String name, int score) {
this.name = name;
this.score = score;
}
@Override
public String toString() {
return "[" + this.name + ":" + this.score + "]";
}
@Override
public int compareTo(Object o) {
Student s = (Student)o;
if (this.score > s.score) {
return -1;
} else if (this.score < s.score) {
return 1;
} else {
return 0;
}
}
}
在 sort 方法中会自动调用 compareTo 方法. compareTo 的参数是 Object , 其实传入的就是 Student 类型的对象.
然后比较当前对象和参数对象的大小关系(按分数来算)
如果当前对象应排在参数对象之前, 返回小于 0 的数字;
如果当前对象应排在参数对象之后, 返回大于 0 的数字;
如果当前对象和参数对象不分先后, 返回 0;
对于 sort 方法来说, 需要传入的数组的每个对象都是 "可比较" 的, 需要具备 compareTo 这样的能力. 通过重写 compareTo 方法的方式, 就可以定义比较规则.
我们也可以自己实现sort 方法来完成刚才的排序过程(使用冒泡排序
public static void sort(Comparable[] array) {
for (int bound = 0; bound < array.length; bound++) {
for (int cur = array.length - 1; cur > bound; cur--) {
if (array[cur - 1].compareTo(array[cur]) > 0) {
// 说明顺序不符合要求, 交换两个变量的位置
Comparable tmp = array[cur - 1];
array[cur - 1] = array[cur];
array[cur] = tmp;
}
}
}
}
Java 中内置了一些很有用的接口, Clonable 就是其中之一.
Object 类中存在一个 clone 方法, 调用这个方法可以创建一个对象的 "拷贝". 但是要想合法调用 clone 方法, 必须要先实现 Clonable 接口, 否则就会抛出 CloneNotSupportedException 异常
Cloneable 拷贝出的对象是一份 "浅拷贝"
观察以下代码
class Money {
public double m = 99.99;
}
class Person implements Cloneable{
public Money money = new Money();
@Override
protected Object clone() throws CloneNotSupportedException {
return super.clone();
}
}
public class TestDemo3 {
public static void main(String[] args) throws CloneNotSupportedException {
Person person1 = new Person();
Person person2 = (Person) person.clone();
System.out.println("通过person2修改前的结果");
System.out.println(person1.money.m);
System.out.println(person2.money.m);
person2.money.m = 13.6;
System.out.println("通过person2修改后的结果");
System.out.println(person1.money.m);
System.out.println(person2.money.m);
}
}
输出结果为
// 执行结果
通过person2修改前的结果
99.99
99.99
通过person2修改后的结果
13.6
13.6
我们发现实现拷贝了吗?实现了,但是当我们修改person2的值的时候,poerson1的值也随之变化,这是为什么呢?
这是因为虽然创建person2对象,使得person1和person2引用所指对象不同,但是由于在Person类
中创建了新的对象,该对象的引用类型所指向‘地址’就放在了person1引用所指向的对象里,在进行拷贝时,person1对象里的内容就拷贝进去了,如下图所示
当改变money 所指向内容时,person1与person2的值应一起变化
我们可以看到,通过clone,我们只是拷贝了Person对象。但是Person对象中的Money对象,并
没有拷贝。通过person2这个引用修改了m的值后,person1这个引用访问m的时候,值也发生了改变。这里就是发生了浅拷贝
如何实现深拷贝呢?其实只要把Mony对象里的内容也一起拷贝就好
则clone实现代码如下
protected Object clone() throws CloneNotSupportedException {
// 只是克隆了 Person 对象
Person person = (Person)super.clone();
// 克隆了 Person 对象 里面的Money对象
Person.m = (Person) this.money.clone();
return person;
//return super.clone();
}
抽象类和接口都是 Java 中多态的常见使用方式. 都需要重点掌握. 同时又要认清两者的区别(重要!!! 常见面试题).
核心区别: 抽象类中可以包含普通方法和普通字段, 这样的普通方法和字段可以被子类直接使用(不必重写), 而接口中不能包含普通方法, 子类必须重写所有的抽象方法.
如之前写的 Animal 例子. 此处的 Animal 中包含一个 name 这样的属性, 这个属性在任何子类中都是存在的. 因此此处的 Animal 只能作为一个抽象类, 而不应该成为一个接口
class Animal {
protected String name;
public Animal(String name) {
this.name = name;
}
}
抽象类存在的意义是为了让编译器更好的校验, 像 Animal 这样的类我们并不会直接使用, 而是使用它的子类.万一不小心创建了 Animal 的实例, 编译器会及时提醒我们
Object是Java默认提供的一个类。Java里面除了Object类,所有的类都是存在继承关系的。默认会继承Object父类。即所有类的对象都可以使用Object的引用进行接收
范例:使用Object接收所有类的对象
class Person{}
class Student{}
public class Test {
public static void main(String[] args) {
function(new Person());
function(new Student());
}
public static void function(Object obj) {
System.out.println(obj);
}
}
//执行结果:
Person@1b6d3586
Student@4554617c
所以在开发之中,Object类是参数的最高统一类型。但是Object类也存在有定义好的一些方法。如下:
如果要打印对象中的内容,可以直接重写Object类中的toString()方法,之前已经讲过了,此处不再累赘
// Object类中的toString()方法实现:
public String toString() {
return getClass().getName() + "@" + Integer.toHexString(hashCode());
}
在Java中,==进行比较时:
a.如果==左右两侧是基本类型变量,比较的是变量中值是否相同
b.如果==左右两侧是引用类型变量,比较的是引用变量地址是否相同
c.如果要比较对象中内容,必须重写Object中的equals方法,因为equals方法默认也是按照地址比较的
// Object类中的equals方法
public boolean equals(Object obj) {
return (this == obj); // 使用引用中的地址直接来进行比较
}
例如
class Person{
private String name ;
private int age ;
public Person(String name, int age) {this.age = age ;
this.name = name ;
}
}
public class Test {
public static void main(String[] args) {
Person p1 = new Person("gaobo", 20) ;
Person p2 = new Person("gaobo", 20) ;
int a = 10;
int b = 10;
System.out.println(a == b); // 输出true
System.out.println(p1 == p2); // 输出false
System.out.println(p1.equals(p2)); // 输出false
}
}
Person类重写equals方法后,然后比较
class Person{
...
@Override
public boolean equals(Object obj) {
if (obj == null) {
return false ;
} if(
this == obj) {
return true ;
}
// 不是Person类对象
if (!(obj instanceof Person)) {
return false ;
}
Person person = (Person) obj ; // 向下转型,比较属性值
return this.name.equals(person.name) && this.age==person.age ;
}
}
比较对象中内容是否相同的时候,一定要重写equals方法
回忆刚刚的toString方法的源码:
public String toString() {
return getClass().getName() + "@" + Integer.toHexString(hashCode());
}
我们看到了hashCode()这个方法,他帮我算了一个具体的对象位置,这里面涉及数据结构,但是博主还没学数据结构,没法讲述,所以我们只能说它是个内存地址。然后调Integer.toHexString()方法,将这个地址以16进制输出。
hashcode方法源码:
public native int hashCode();
该方法是一个native方法,底层是由C/C++代码写的。我们看不到。
我们认为两个名字相同,年龄相同的对象,将存储在同一个位置,如果不重写hashcode()方法,我们可以来看示例代码:
class Person {
public String name;
public int age;
public Person(String name, int age) {
this.name = name;
this.age = age;
}
}
public class TestDemo4 {
public static void main(String[] args) {
Person per1 = new Person("gaobo", 20) ;
Person per2 = new Person("gaobo", 20) ;
System.out.println(per1.hashCode());
System.out.println(per2.hashCode());
}
}
//执行结果
460141958
1163157884
两个对象的hash值不一样。
像重写equals方法一样,我们也可以重写hashcode()方法。此时我们再来看看
class Person {
public String name;
public int age;
public Person(String name, int age) {
this.name = name;
this.age = age;
} @
Override
public int hashCode() {
return Objects.hash(name, age);
}
}
public class TestDemo4 {
public static void main(String[] args) {
Person per1 = new Person("gaobo", 20) ;
Person per2 = new Person("gaobo", 20) ;
System.out.println(per1.hashCode());System.out.println(per2.hashCode());
}
}
//执行结果
460141958
460141958
我们发现哈希值变为一样了
1、hashcode方法用来确定对象在内存中存储的位置是否相同
2、事实上hashCode() 在散列表中才有用,在其它情况下没用。在散列表中hashCode() 的作用是获取对象的散列码,进而确定该对象在散列表中的位置。
关于《 接口和Object类》就讲解到这儿,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下。