- 国内高防加速CDN内容分发服务详细接入教程
网友阿贵
网站运维web安全安全性测试安全威胁分析
CDN功能与接入指南CDN(内容分发网络)是一种集安全防护和内容加速于一体的网络解决方案,适用于需要兼顾安全性和访问速度的业务场景。以下是其主要功能与接入步骤:核心功能:免费SSL证书:支持一键申请SSL证书,确保数据传输安全。Web攻击防护:集成WAF防火墙,防御SQL注入、XSS等常见攻击。CC攻击防御:智能识别并拦截恶意请求,保护网站稳定运行。BOT机器人分析:自动识别并管理机器人流量,优化
- Mysql 报错: (1364, “Field ‘id‘ doesn‘t have a default value“)
Lonelypatients°
MySQLmysql
主要原因:在于主键表Id没有设置自增而报错,解决办法:设置主键自增会诱发另一个错误:Cannotchangecolumn'id':usedinaforeignkeyconstraint在于主键id已存在外键关系,不允许随意修改主键的属性值,所以我们须得先把外键关联删除之后,在更改主键,主键更改完毕后,加入外键,就好了
- 【Q&A】装饰模式在Qt中有哪些运用?
浅慕Antonio
Q&Aqt数据库服务器
在Qt框架中,装饰模式(DecoratorPattern)主要通过继承或组合的方式实现,常见于IO设备扩展和图形渲染增强场景。以下是Qt原生实现的装饰模式典型案例:一、QIODevice装饰体系(继承方式)场景为基础IO设备(如文件、缓冲区)添加数据格式解析、缓冲优化等功能。类图(Mermaid)«abstract»QIODevice+readData()+writeData()QFileQBuf
- MiniMind:完全从 0 训练自己的大模型
三花AI
三花AI人工智能LLM大模型
是B站UP主近在远方的远开源的一个微型语言模型,改进自DeepSeek-V2、Llama3结构,项目包含整个数据处理、pretrain、sft、dpo的全部阶段,包含混合专家(MoE)模型。其目标是把上手LLM的门槛无限降低,直接从0开始训练一个极其轻量的语言模型,最低仅需2G显卡即可推理训练!
- minimind2学习:(1)训练
溯源006
minimind学习学习深度学习生成模型
1、数据下载参考:https://github.com/jingyaogong/minimind/tree/master2、预训练训练6个epochspythontrain_pretrain.py--epochs6训练过程:LLM总参数量:25.830百万Epoch:[1/6](0/11040)loss:8.940lr:0.000550000000epoch_Time:106.0min:Epoch
- DPO 核心理论推导:参考策略距离约束下的最优策略 + 损失函数设计
iiiiii11
机器学习人工智能论文阅读笔记语言模型深度学习
Rafailov,Rafael,etal.“Directpreferenceoptimization:Yourlanguagemodelissecretlyarewardmodel.”AdvancesinNeuralInformationProcessingSystems36(2023):53728-53741.本文整理了DPO论文中两个核心结论的推导,包括参考策略距离约束下的最优策略的形式,以及
- MiniMind
亚伯拉罕·黄肯
大模型人工智能
数据集分类:tokenizer训练集:这个数据集用于训练分词器(tokenizer),是文本处理中的一个重要步骤。它可以帮助模型更好地理解文本数据的结构。Pretrain数据:这是用于预训练模型的数据集,它可以帮助模型学习语言的基本结构和特征。SFT数据:SFT(SupervisedFine-Tuning)数据集,用于监督式微调,可以提高模型在特定任务上的性能。DPO数据1和DPO数据2:这两个数
- 直方图梯度提升:大数据时代的极速决策引擎
万事可爱^
大数据机器学习深度学习直方图梯度提升GBDT算法
一、为什么需要直方图梯度提升?在Kaggle竞赛的冠军解决方案中,超过70%的获奖方案都使用了梯度提升算法。但当数据量突破百万级时,传统梯度提升树(GBDT)面临三大致命瓶颈:训练耗时剧增:每个特征的分割点计算都需要全量数据排序内存消耗爆炸:存储排序后的特征值需要额外空间处理效率低下:无法有效利用现代CPU的多核特性而梯度提升决策树(GBDT)作为集成学习的代表算法,通过迭代构建决策树实现预测能力
- cippe2025北京石油展,遨游通讯将携多款防爆手机亮相!
AORO_BEIDOU
智能手机信息与通信人工智能安全网络
在石油石化等危险作业场景,安全是生命线,智能化是未来发展的核心引擎。2025年3月26-28日,遨游通讯将携九重防爆标准及防爆手机、防爆对讲机、防爆平板等防爆智能终端,强势登陆第二十五届中国国际石油石化技术装备展览会(cippe)!诚邀您莅临E1馆E1159展位,共同见证安全与智能深度融合的革新力量!一、核心产品遨游通讯依托九重防爆标准,打造覆盖石油、石化全场景的防爆智能终端,为危险作业场景提供“
- LLMs之minimind:minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/分布式预训练/自动混
一个处女座的程序猿
NLP/LLMsCaseCodetransformerminimind预训练
LLMs之minimind:minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/分布式预训练/自动混合精度优化/梯度累积/梯度裁剪/定期保存模型目录minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/
- windows使用ssh-copy-id命令的解决方案
爱编程的喵喵
Windows实用技巧windowssshssh-copy-id解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了windows使用ssh-copy-
- ffmpeg录屏
_洛_神
音视频音视频
qt+ffmpeg屏幕录制软件完整工程链接:https://download.csdn.net/download/weixin_42538789/85013858测试代码#include#include"screencapture.h"#includeusingnamespacestd;intmain(intargc,char*argv[]){QCoreApplicationa(argc,argv
- 关于AI OS那点事
大囚长
科普天地大模型人工智能
AIOS(人工智能操作系统)作为面向智能时代的操作系统,其功能定位和架构设计与传统操作系统(如Linux、Windows、iOS等)存在显著差异。一、AIOS需具备的核心功能智能体全生命周期管理智能体调度与并发:需支持多智能体任务的优先级排序、资源分配及并发执行,例如通过轮询调度或动态优先级算法优化LLM资源利用率。上下文感知与切换:通过上下文管理器实现智能体交互状态的快照保存与恢复,解决LLM生
- 智能指针和常规指针在性能上有什么区别?
指针
智能指针和常规指针在性能上确实存在一些差异,这些差异主要源于它们在内存管理机制上的不同。以下是它们在性能方面的详细对比:一、智能指针的性能开销std::unique_ptr开销较小:std::unique_ptr是一种轻量级的智能指针,它通过移动语义管理资源的所有权。由于它不涉及引用计数,因此性能开销相对较小。特点:不允许复制,但可以移动。在对象生命周期结束时自动调用delete释放内存。性能影响
- 强化学习 Reward
百态老人
算法
在强化学习中,奖励(Reward)是智能体(Agent)与环境(Environment)交互过程中获得的重要反馈信号。奖励机制在强化学习中扮演着至关重要的角色,因为它不仅指导智能体如何在环境中行动,还影响其策略的优化和最终的学习效果。奖励是智能体在执行某个动作后从环境中获得的即时反馈,用于评估该动作的好坏。这种反馈帮助智能体调整其行为策略,以期在未来获得更多的奖励。奖励可以是正数、负数或零,其或负
- 智能指针和常规指针在性能上有什么区别?
指针
智能指针和常规指针在性能上确实存在一些差异,这些差异主要源于它们在内存管理机制上的不同。以下是它们在性能方面的详细对比:一、智能指针的性能开销std::unique_ptr开销较小:std::unique_ptr是一种轻量级的智能指针,它通过移动语义管理资源的所有权。由于它不涉及引用计数,因此性能开销相对较小。特点:不允许复制,但可以移动。在对象生命周期结束时自动调用delete释放内存。性能影响
- DeepSpeed-Chat:Reward Model【奖励模型】
u013250861
#LLM/训练RL/强化学习排序强化学习
第二阶段:奖励模型微调奖励模型(RM)微调类似于第一阶段有监督微调(SFT)。但是,RM和SFT微调之间存在几个关键差异:训练数据差异:对于SFT微调,数据是查询(query)和答案(answer)拼接在一起。然而,对于RM微调,每批数据由两个查询-答案对组成,即具有高分答案和低分答案的相同查询。这也导致了如下所述的第二个差异。训练目标差异:对于RW,训练目标是pairwiserankingsco
- springboot自定义封装线程池工具类
k&p
Javaspringbootjavaspring
1.首先配置线程池的配置文件,在此处定义线程池的核心线程数等核心参数:/***核心线程数=cpu核心数+1*/privatefinalintcore=Runtime.getRuntime().availableProcessors()+1;@AutowiredprivateThreadPoolPropertiesthreadPoolProperties;@Bean(name="threadPool
- 【二、DeepSeek应用场景与案例】10.农业智能化:DeepSeek如何助力精准种植与养殖?
代码世界的浪客
人工智能DeepSeek
一、引言1.1农业智能化的时代背景在全球人口持续增长的大趋势下,粮食需求正以前所未有的速度攀升。据联合国相关预测,到2050年,全球人口有望突破90亿,这无疑给本就压力重重的农业生产带来了更为艰巨的挑战,保障充足的粮食供应成为了迫在眉睫的任务。与此同时,资源短缺问题日益尖锐,耕地面积因城市化进程、土地退化等因素不断缩减,水资源分布不均且浪费严重,进一步加剧了农业生产的困境。根据世界银行的数据,过去
- 【人工智能】大模型的幻觉问题:DeepSeek 的解决策略与实践
蒙娜丽宁
Python杂谈人工智能人工智能
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界大语言模型(LLM)的“幻觉”问题,即模型生成与事实不符或脱离上下文的内容,是限制其广泛应用的关键挑战之一。本文深入探讨了幻觉问题的成因,包括训练数据的偏差、推理过程中的过度泛化以及缺乏外部验证机制。以DeepSeek系列模型为研究对象,我们分析了其在解
- WPF 控件保存图片显示不全的问题,和后台代码添加控件不能显示的问题
lijiaweizuishuai
WPFWPF控件截图
这几天研究自动生成货物标签,想着在WPF中做一个自定义标签生成控件,然后点击那个标签控件生成打印,本来是个挺简单的功能,WPF控件保存图片有现成的API方法。没想到是个坑。现在把他填一下有两种解决方案1、https://blog.csdn.net/u012366767/article/details/81461432这是一种还有一种是我发现当一个控件想生成图片的时候是根据当前图片上层最近的一个Pa
- 83.为什么Object类型可以用来打开窗口 C#例子 WPF例子
军训猫猫头
wpfc#ui
在WPF中,打开和关闭窗口时使用object类型是完全可行的,任何窗口类型都可以通过object类型来操作,只要正确地将其转换为Window类型。为什么可以使用object类型?Window是所有窗口的基类:在WPF中,所有窗口类型(如MainWindow、SettingsWindow等)都继承自Window类。因此,任何窗口实例都可以被隐式地转换为object类型,因为object是C#中所有类
- 高效利用AI处理大型编程任务
大囚长
大模型人工智能
在大型编程任务中,通过将任务细分为适合AI上下文处理能力的子任务并整合生成目标应用,已成为当前AI辅助开发的主流方法。一、任务分解的核心策略模块化功能拆分通过分层架构设计将系统拆分为独立模块(如用户认证、支付接口、数据存储),每个模块的代码量控制在AI模型的上下文窗口内(如ClaudeMax的200k窗口可处理约2万行代码)。例如开发电商系统时,可分解为「购物车逻辑」「库存管理」「订单流水」等子模
- 从原理到实践:Go 语言内存优化策略深度解析
叶间清风1998
服务器linux网络
目录一、引言二、Go语言内存管理基础原理2.1栈与堆内存分配2.2垃圾回收机制剖析三、内存优化策略与实践3.1合理使用指针传递3.2避免不必要的内存分配3.3优化切片与映射的使用3.4控制变量作用域3.5减少闭包导致的变量逃逸四、内存优化工具与性能分析4.1pprof工具的使用4.2其他性能分析辅助手段五、不同场景下的内存优化案例分析5.1高并发Web服务场景5.2大数据处理与分析场景六、总结与展
- HCIA-AI人工智能笔记3:数据预处理
噗老师
华为认证人工智能笔记wpf数据处理AI华为认证
统讲解数据预处理的核心技术体系,通过Python/Pandas与华为MindSpore双视角代码演示,结合特征工程优化实验,深入解析数据清洗、标准化、增强等关键环节。一、数据预处理技术全景图graphTDA[原始数据]-->B{数据清洗}B-->B1[缺失值处理]B-->B2[异常值检测]B-->B3[重复值删除]A-->C{特征工程}C-->C1[标准化/归一化]C-->C2[离散化分箱]C--
- AWE大会来袭:家电圈上演“无限战争”
互联网江湖
人工智能大数据microsoft
文:互联网江湖作者:刘致呈3月19日,一年一度的中国家电及消费电子博览会AWE如期而至。每次大会,大小品牌方都会携自己的新品亮相,是家电圈的“春晚”。这次的看点除了AI外,还有一个有意思的点,就是部分品牌开始向大家电进军。比如追觅科技,在高端扫地机器人市场上取得一番成绩之后,表示要开始做冰箱、空调、洗衣机了。无独有偶,主攻厨电赛道的方太,也开始进军冰箱板块;还有石头科技,也有洗烘一体的洗衣机。这些
- 看完荣耀CEO李健的“阿尔法战略”,我愈发的怀念赵明了
互联网江湖
人工智能大数据物联网
文:互联网江湖作者:刘致呈赵明辞任一月余,新官上任第一把火来了。灯光打在身上,新任荣耀CEO李建站在台上宣布,荣耀就此将成为一家AI终端生态公司。李健身后的屏幕上,映出一行字:“HONORALPHAPLAN”。这就是荣耀未来的新方向:“阿尔法战略”。所谓“阿尔法战略”,其实核心就一句话,荣耀要转型成为“生态公司”。第一把火就要给重新定位战略,李健这把火烧得很猛,分量很足。向着生态转型并没有错,华为
- 黑客攻击deepseek服务原理解析
大囚长
大模型机器学习黑客帝国人工智能
黑客可通过操纵大模型的连续对话上下文回顾机制,构造恶意请求以触发模型进入无限思考循环或超长上下文处理,从而形成对对话服务的DoS攻击(拒绝服务攻击)。这一攻击方式的核心在于利用大模型对上下文处理机制的脆弱性,通过极低的攻击成本实现资源耗尽。一、攻击原理与实现路径无限推理循环攻击通过输入特定构造的提示词(如“树中两条路径之间的距离”),诱导模型陷入无限思考链(Chain-of-Thought,CoT
- ESP32 智能猫喂水开发日志(RICE/MoSCoW/Kano三种产品路线规划)
天瑜创客
猫喂水项目单片机c++c语言数据结构visualstudiocodeharmonyos
RICE/MoSCoW/Kano三种产品路线的差异分析一、核心定位与适用场景差异1.RICE模型-核心逻辑:通过量化指标(Reach接触量、Impact影响程度、Confidence信心指数、Effort投入精力)计算需求优先级,聚焦资源投入与收益最大化。-适用场景:适用于需要平衡开发成本与预期收益的项目,例如新产品功能迭代或市场推广策略优化。2.MoSCoW模型-核心逻辑:将需求分为四类——Mu
- CentOS7下安装python3.8
讓丄帝愛伱
Linux编程语言
查看系统版本#查看系统版本cat/etc/centos-release>CentOSLinuxrelease7.2.1511(Core)uname-a>Linuxlocalhost.localdomain3.10.0-327.el7.x86_64#1SMPThuNov1922:10:57UTC2015x86_64x86_64x86_64GNU/Linux#查看python版本python-V>Py
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号