大模型真的会“好事多模”吗?

自从2018年谷歌发布BERT之后

到ChatGPT在火爆全球

大模型的超强能力以及背后的吸金属性

吸引着无数厂商对其趋之若鹜

纷纷投入到炼大模型的热潮中去

这大模型不仅是越来越大

模态还越“堆”越多

大模型真的会“好事多模”吗?_第1张图片

多模态大模型到底是个啥?

讲到这里,我们先来说说

多模态大模型中的

这个“多模态”到底是个啥

多模态的概念源于德国生理学家

赫尔姆霍茨提出的“感觉道”

加被称为“感觉通道”

主要探讨了人类在感知和认知过程中

多种感官的相互作用和协同工作

如视觉、听觉、触觉、味觉和嗅觉等

大模型真的会“好事多模”吗?_第2张图片

在人工智能领域

多模态意味着算法可以处理不止一个模态的数据

可以在文本、图像、音频等

多种类型的数据中理解、转译、生成

有效提高大模型处理多种信息的

准确性和鲁棒性

比如多模态大模型

理解文字和图片两种模态的数据

就能以文生图,让画手直面职业危机

理解音频、视频、图片多种形态的数据

在生成工业质检模型时

就能实现视频分析、图片分析

甚至音频分析等多样化的选择

大模型真的会“好事多模”吗?_第3张图片

自从OpenAI发布多模态大模型GPT-4后

全球各大厂商便又开始朝着“好事多模”进发

这模态越“堆”越多

前一段时间还出现了

六模态大模型和全模态大模型……

大模型真的会“好事多模”吗?_第4张图片

“堆模态”是喜还是忧?

看着大家争相发布多模态大模型

突然就有一个问题:

大模型的模态越多就真的越好吗?

答案却是……不一定。

大模型真的会“好事多模”吗?_第5张图片

举个例子,如果你要建造一栋房子

你会选择使用多少种不同的材料呢?

显然,选择过多的材料会导致

建筑成本增加、建设时间、精力增加等问题

大模型真的会“好事多模”吗?_第6张图片

而多模态大模型的模态过多

也会导致一些问题的出现,比如:

1.多模态不等于凑模态

如今厂商们都在争先恐后的发布

自家的多模态大模型

其中当然有许多精品

但也不乏粗制滥造的水货

比如在自然语言处理中

增加一个文字转换语音的功能

就生成自己家练出了多模态

大模型真的会“好事多模”吗?_第7张图片

2.多模态=高成本

算力资源是各大公司进入炼大模型的入场券

数据更熟训练大模型的关键

模态越多大模型

训练所需要的算力就越多

数据量也就越丰富

如果公司一味要求模态的丰富

最终很可能导致大模型模态多而不精

反而得不偿失

大模型真的会“好事多模”吗?_第8张图片

3.多模态不等于好落地

上文也提到了

多模态大模型在处理复杂的应用场景时

可能更加有效

然而不同的应用场景对模态的需求是不同的

例如,在自然语言处理领域

对于一些特定任务

如情感分析或文本分类

使用单一的文本模态可能已经足够

而不需要额外的图像或音频模态

大模型真的会“好事多模”吗?_第9张图片

“贪多嚼不烂”这句俗语

如今也可以用在炼大模型上

厂家们在决定“堆模态”前

不妨先考虑一下

落地场景、数据质量、算力资源等综合因素

适当选择模型结构

切记模型虽好,但不能贪多哦!

往期 精 选:

大模型真的会“好事多模”吗?_第10张图片大模型真的会“好事多模”吗?_第11张图片大模型真的会“好事多模”吗?_第12张图片

大模型真的会“好事多模”吗?_第13张图片

你可能感兴趣的:(大模型真的会“好事多模”吗?)