石子合并-直线版
(点击此处查看题目)
朴素写法
最简单常见的写法就是通过枚举分割点,求出每个区间合并的最小花费,从而得到整个区间的最小花费,时间复杂度为O(n^3),核心代码如下:
for (int i = 1; i < n; i++)
{
for (int j = 1; j + i <= n; j++)
{
int e = j + i;
dp[j][e] = inf;
for (int k = j; k + 1 <= e; k++)
{
dp[j][e] = min(dp[j][e], dp[j][k] + dp[k + 1][e] + sum[e] - sum[j - 1]);
}
}
}
View Code
四边形优化
对于函数f[][](在这里可以看作数组),如果满足 f[a][c] + f[b][d] <= f[b][c] + f[a][d],则f满足四边形不等式,即 f[i][j-1] <= f[i][j] <= f[i+1][j]
记s[i][j]表示取得dp[i][j]的最优解的分割点,稍加证明即可发现其满足四边形不等式
注意到,在朴素写法中,我们需要枚举分割点来求解:dp[i][j] = max(dp[i][j],dp[i][k]+dp[k+1][j] + sum[j] - sum[i-1]) {i <= k <= j ) ,而因为 s[i][j-1] <= s[i][j] <= s[i+1][j],所以我们枚举的最优分割点s[i][j]的范围即[ s[i][j-1],s[i+1][j] ] ,所以我们枚举分割点的时候,就直接枚举区间[ s[i][j-1],s[i+1][j] ] 而不用枚举[i,j],这样一来,时间复杂度就是O(n^2),核心代码如下:
for (int i = 1; i <= n; i++) //枚举右端点-左端点的值
{
for (int j = 1; j + i <= n; j++) //枚举区间左端点
{
int e = j + i; //区间右端点
dp[j][e] = inf;
for (int k = s[j][e - 1]; k <= s[j + 1][e]; k++)
{
if (dp[j][e] > dp[j][k] + dp[k + 1][e] + sum[e] - sum[j - 1])
{
dp[j][e] = dp[j][k] + dp[k + 1][e] + sum[e] - sum[j - 1];
s[j][e] = k;
}
}
}
}
View Code
GarsiaWachs算法
这个方法是我觉得最优的解法了,时间复杂度为O(nlogn),比四边形优化更快,具体原理理解不足,就先贴上大佬的解析吧
解决这类问题的大概步骤是:
0.证明w满足四边形不等式,这里w是m的附属量,形如m[i,j]=opt{m[i,k]+m[k,j]+w[i,j]},此时大多要先证明w满足条件才能进一步证明m满足条件
1.证明m满足四边形不等式
2.证明s[i,j-1]≤s[i,j]≤s[i+1,j]
设序列是stone[],从左往右,找一个满足stone[k-1] <= stone[k+1]的k,找到后合并stone[k]和stone[k-1],再从当前位置开始向左找最大的j,使其满足stone[j] > stone[k]+stone[k-1],插到j的后面就行。一直重复,直到只剩下一堆石子就可以了。在这个过程中,可以假设stone[-1]和stone[n]是正无穷的。
举个例子:186 64 35 32 103
因为35<103,所以最小的k是3,我们先把35和32删除,得到他们的和67,并向前寻找一个第一个超过67的数,把67插入到他后面,得到:186 67 64 103,现在由5个数变为4个数了,继续:186 131 103,现在k=2(别忘了,设A[-1]和A[n]等于正无穷大)234 186,最后得到420。最后的答案呢?就是各次合并的重量之和,即420+234+131+67=852。
基本思想是通过树的最优性得到一个节点间深度的约束,之后证明操作一次之后的解可以和原来的解一一对应,并保证节点移动之后他所在的深度不会改变。具体实现这个算法需要一点技巧,精髓在于不停快速寻找最小的k,即维护一个“2-递减序列”朴素的实现的时间复杂度是O(n*n),但可以用一个平衡树来优化,使得最终复杂度为O(nlogn)。
(解析出自:https://blog.csdn.net/bao___zi/article/details/81913096)
#include
#include
#include
#include
#include
#include<string>
#include
#include
#include
#include
View Code
石子合并-环形版
(点击此处查看例题)
相比于直线版的,环形版可以从每一个点j开始,合并其后i堆石子为一堆,1 <= i <= n-1 ,合并的区间长度不受j的影响,而直线版的i满足: 1 <= i <= n - j ,合并的区间收到j的影响,那么我们就将整个环拆成n段链,求出合并这n段链中得分最大(小)者即可,其余操作和直线版一样
朴素写法
#include
#include
#include
#include
#include
#include<string>
#include
#include
#include
#include
View Code
四边形优化写法(目前只能求最小代价)
#include
#include
#include
#include
#include
#include<string>
#include
#include
#include
#include
View Code