1、Spark SQL 概述

1、Spark SQL 概述

Spark SQL概念

  • Spark SQL is Apache Spark’s module for working with structured data.
    • 它是spark中用于处理结构化数据的一个模块

Spark SQL历史

  • Hive是目前大数据领域,事实上的数据仓库标准。

1、Spark SQL 概述_第1张图片

  • Shark:shark底层使用spark的基于内存的计算模型,从而让性能比Hive提升了数倍到上百倍。
  • 底层很多东西还是依赖于Hive,修改了内存管理、物理计划、执行三个模块
  • 2014年6月1日的时候,Spark宣布了不再开发Shark,全面转向Spark SQL的开发

Spark SQL优势

  • Write Less Code

1、Spark SQL 概述_第2张图片

  • Performance

1、Spark SQL 概述_第3张图片

python操作RDD,转换为可执行代码,运行在java虚拟机,涉及两个不同语言引擎之间的切换,进行进程间 通信很耗费性能。

DataFrame

  • 是RDD为基础的分布式数据集,类似于传统关系型数据库的二维表,dataframe记录了对应列的名称和类型
  • dataFrame引入schema和off-heap(使用操作系统层面上的内存)
    • 1、解决了RDD的缺点
    • 序列化和反序列化开销大
    • 频繁的创建和销毁对象造成大量的GC
    • 2、丢失了RDD的优点
    • RDD编译时进行类型检查
    • RDD具有面向对象编程的特性

用scala编写的RDD比Spark SQL编写转换的RDD慢,涉及到执行计划

  • CatalystOptimizer:Catalyst优化器
  • ProjectTungsten:钨丝计划,为了提高RDD的效率而制定的计划
  • Code gen:代码生成器

1、Spark SQL 概述_第4张图片

直接编写RDD也可以自实现优化代码,但是远不及SparkSQL前面的优化操作后转换的RDD效率高,快1倍左右

优化引擎:类似mysql等关系型数据库基于成本的优化器

首先执行逻辑执行计划,然后转换为物理执行计划(选择成本最小的),通过Code Generation最终生成为RDD

  • Language-independent API

    用任何语言编写生成的RDD都一样,而使用spark-core编写的RDD,不同的语言生成不同的RDD

  • Schema

    结构化数据,可以直接看出数据的详情

    在RDD中无法看出,解释性不强,无法告诉引擎信息,没法详细优化。

**为什么要学习sparksql **

sparksql特性

  • 1、易整合
  • 2、统一的数据源访问
  • 3、兼容hive
  • 4、提供了标准的数据库连接(jdbc/odbc)

你可能感兴趣的:(#,spark,#,hive,spark,sql,大数据)