- vue3+springboot电影院售票选座管理系统
qq_3166678367
springboot后端java
目录本系统(已开发完成)->成品实现截图开发技术本系统支持的技术栈源码获取详细视频演示:文章底部获取博主联系方式!!!!本课题重点核心代码部分展示论文提纲来自指导老师帅的肯定视频演示/源码获取本系统(已开发完成)->成品实现截图开发技术关键技术实现:在Java的开发过程中,可以使用HTML、CSS、JavaScript等前端技术来实现系统的用户界面设计和交互功能。后端可以使用Java语言编写业务逻
- DeepSeek + 药物研发:解决药物研发周期长、成本高-降低80%、失败率高-减少40%
Debroon
医疗大模型研发+慢病逆转人工智能深度学习
DeepSeek+药物研发:解决药物研发周期长、成本高-降低80%、失败率高-减少40%论文大纲1.WHY——研究背景与现实问题1.1研究要解决的现实问题与提出背景1.2研究所要解决的问题类别1.3正反例对比关联:和前人的工作有什么关系?3.总结归纳3.1总结收获3.2探索思考4.WHAT——核心发现或论点5.HOW——研究过程、创新与关键数据6.HOWGOOD——理论贡献与实践意义解法拆解1.1
- 医图论文 CVPR‘24 | 适应医学图像中泛化异常检测的视觉-语言模型
小白学视觉
医学图像处理论文解读语言模型人工智能计算机视觉医学图像顶会医学图像处理CVPR论文解读
论文信息题目:AdaptingVisual-LanguageModelsforGeneralizableAnomalyDetectioninMedicalImages适应医学图像中泛化异常检测的视觉-语言模型作者:ChaoqinHuang,AofanJiang,JinghaoFeng,YaZhang,XinchaoWang,YanfengWang源码:https://github.com/Medi
- 程序员不用写代码?DeepSeek这个隐藏功能让我惊掉下巴
后端
凌晨三点半,显示器蓝光映着我的黑眼圈。就在我第18次修改接口文档时,同事老王突然在微信甩来个神秘链接:"用这个,今晚能睡个好觉"。我点开那个叫DeepSeek的页面,没想到接下来的三个小时,我经历了职业生涯最魔幻的加班夜。你见过会自己写测试用例的AI吗?那天晚上,我把项目需求文档往DeepSeek的对话框一扔,它竟然像资深架构师似的,先把需求拆解成模块,接着自动生成了带注释的接口文档。最绝的是,在
- A Survey of Large Language Models大模型综述论文章节总结
WhyteHighmore
论文语言模型人工智能自然语言处理论文笔记
ASurveyofLLM人大译ASurveyofLargeLanguageModels这篇论文全面回顾了大型语言模型(LLM)的最新进展,重点关注其发展背景、关键发现和主流技术。文章主要围绕LLM的四个主要方面展开:1引言自从1950年图灵测试被提出以来,人类一直在探索机器掌握语言智能的方法。语言本质上是一种受语法规则支配的复杂、精细的人类表达系统,这使得开发能够理解和掌握语言的强大人工智能(AI
- 论文笔记-Contrastive Learning for Unpaired Image-to-Image Translation
kingsleyluoxin
计算机视觉论文笔记深度学习python计算机视觉机器学习人工智能深度学习
论文信息标题:ContrastiveLearningforUnpairedImage-to-ImageTranslation作者:TaesungPark,AlexeiA.Efros,RichardZhang,Jun-YanZhu机构:UniversityofCalifornia,Berkeley;AdobeResearch代码链接https://github.com/taesungp/contra
- 【论文精读】SCINet-基于降采样和交互学习的时序卷积模型
打酱油的葫芦娃
时序预测算法时序预测SCINetTCN
《SCINet:TimeSeriesModelingandForecastingwithSampleConvolutionandInteraction》的作者团队来自香港中文大学,发表在NeurIPS2022会议上。动机该论文的出发点是观察到时间序列数据具有独特的属性:即使在将时间序列下采样成两个子序列后,时间关系(例如数据的趋势和季节性成分)也基本上得以保留。这个观察启发了作者去设计一种新型的神
- 【论文精读】PatchTST-基于分块及通道独立机制的Transformer模型
打酱油的葫芦娃
时序预测算法时序预测PatchTSTTransformer预训练微调表征学习
《ATIMESERIESISWORTH64WORDS:LONG-TERMFORECASTINGWITHTRANSFORMERS》的作者团队来自PrincetonUniversity和IBMResearch,发表在ICLR2023会议上。动机Transformer模型因其自注意力机制在处理序列数据方面的优势,在自然语言处理(NLP)、计算机视觉(CV)、语音等多个领域取得了巨大成功。这种机制使得模型
- 通用具身智能机器人首次进厂造芯!
量子位
在全球半导体产业竞争日益激烈的背景下,半导体生产在部分高度依赖人力的生产环节,传统的智能化生产模式仍暴露出效率瓶颈与污染问题。人工操作易导致污染,且效率不高、污染控制难度大。如今,随着通用智能机器人的应用,这一难题正迎来全新解决方案。3月18日,国内领先的具身智能机器人公司智平方与全球知名科技创新企业吉利科技集团旗下浙江晶能微电子有限公司正式签署战略合作协议。双方将基于智平方自研的端到端具身大模型
- 【Hinton论文精读】The Forward-Forward Algorithm: Some Preliminary Investigations-202212
tyhj_sf
论文研读笔记ML理论系列人工智能深度学习FF算法
博文导航0引言1论文摘要2反向传播有什么问题呢?3Forward-Forward算法3.1使用逐层优化函数学习多层表示4Forward-Forward算法的实验4.1反向传播baseline4.2FF算法的一个简单的无监督的例子4.3FF算法的一个简单的监督例子4.4使用FF算法来模拟感知中自上而下的效应4.5作为教师使用空间环境的预测4.6CIFAR-10实验5睡眠6FF算法与其他对比性学习技术
- 华为OD2023(A卷)基础题21【日志采集系统】
大司码
算法华为od
日志采集系统题目日志采集是运维系统的的核心组件。日志是按行生成,每行记做一条,由采集系统分批上报。如果上报太频繁,会对服务端造成压力;如果上报太晚,会降低用户的体验;如果一次上报的条数太多,会导致超时失败。为此,项目组设计了如下的上报策略:每成功上报一条日志,奖励1分每条日志每延迟上报1秒,扣1分积累日志达到100条,必须立即上报给出日志序列,根据该规则,计算首次上报能获得的最多积分数。输入按时序
- 【深度学习遥感分割|论文解读2】UNetFormer:一种类UNet的Transformer,用于高效的遥感城市场景图像语义分割
985小水博一枚呀
论文解读深度学习transformer人工智能网络cnn
【深度学习遥感分割|论文解读2】UNetFormer:一种类UNet的Transformer,用于高效的遥感城市场景图像语义分割【深度学习遥感分割|论文解读2】UNetFormer:一种类UNet的Transformer,用于高效的遥感城市场景图像语义分割文章目录【深度学习遥感分割|论文解读2】UNetFormer:一种类UNet的Transformer,用于高效的遥感城市场景图像语义分割2.Re
- 【Image captioning-RS】论文12 Prior Knowledge-Guided Transformer for Remote Sensing Image Captioning
CV视界
Imagecaptioning学习transformer深度学习人工智能
1.摘要遥感图像(RSI)字幕生成旨在为遥感图像生成有意义且语法正确的句子描述。然而,相比于自然图像字幕,RSI字幕生成面临着由于RSI特性而产生的额外挑战。第一个挑战源于这些图像中存在大量物体。随着物体数量的增加,确定描述的主要焦点变得越来越困难。此外,RSI中的物体通常外观相似,进一步复杂化了准确描述的生成。为克服这些挑战,我们提出了一种基于先验知识的transformer(PKG-Trans
- springboot毕设 电脑销售管理系统 程序+论文
真纯Django毕设程序
springboot课程设计后端
本系统(程序+源码)带文档lw万字以上文末可获取一份本项目的java源码和数据库参考。系统程序文件列表开题报告内容研究背景随着信息技术的飞速发展和普及,电脑已经成为现代生活和工作中不可或缺的重要工具。电脑销售行业也随之迎来了前所未有的发展机遇,但同时也面临着激烈的市场竞争和不断变化的客户需求。传统的销售管理模式已难以满足当前市场的快速响应和精细化管理要求。因此,开发一套高效、便捷、全面的电脑销售管
- WebRTC 介绍
KillFuckBugs
webrtc
WebRTC简介WebRTC(WebRealTimeCommunication,网页实时通信)是一个开源项目和技术标准,旨在为浏览器和应用程序提供实时通信功能,无需额外的插件或第三方软件。它最初由Google在2011年发起,现由W3C(万维网联盟)和IETF(互联网工程任务组)共同维护和标准化。WebRTC的核心目标是实现低延迟、高质量的音视频通信以及点对点数据传输,广泛应用于视频会议、实时聊天
- OctoTools:一个具有复杂推理可扩展工具的智体框架
三谷秋水
智能体大模型机器学习人工智能语言模型机器学习
25年2月来自斯坦福大学的论文“OctoTools:AnAgenticFrameworkwithExtensibleToolsforComplexReasoning”。解决复杂的推理任务可能涉及视觉理解、域知识检索、数值计算和多步骤推理。现有方法使用外部工具增强大语言模型(LLM),但仅限于专业领域、有限的工具类型或需要额外的训练数据。本文的OctoTools,是一个无需训练、用户友好且易于扩展的
- 华为海思 CPU「麒麟 X90」曝光
自不量力的A同学
华为
2025年3月15日,中国信息安全评测中心发布安全可靠测评结果公告(2025年第1号),华为海思麒麟X90处理器首次曝光,其安全可靠等级评测结果为II级。相关信息如下:架构与制程:采用华为自研的“泰山V3”架构,基于ARMv9指令集,首次在PC端实现“超线程+大小核异构”设计,集成多达16核(4大核+12能效核),主频突破4.2GHz。推测制程为中芯国际N+2的等效7nm技术。芯片集成:将CPU、
- 数字孪生技术在工业制造中的应用探索
知识产权13937636601
计算机制造人工智能
一、数字孪生:工业4.0的虚实纽带1.1技术定义与发展脉络数字孪生(DigitalTwin)通过实时数据映射,在虚拟空间构建物理实体的动态镜像。其演进历程:概念萌芽(2002年):NASA首次提出用于航天器健康监测技术成型(2012年):通用电气(GE)将其引入工业领域规模化应用(2020年至今):全球市场规模达$86亿美元,年增速31%(Gartner数据)1.2工业场景的核心价值维度传统模式数
- 系统应用权限设置跳转鸿蒙示例代码
本文原创发布在华为开发者社区。介绍本示例基于设置应用实现引导用户跳转到系统设置页进行权限,通知的相关设置,包含以下两个场景。场景一:如果应用首次拒绝了消息通知,应用希望能够引导用户拉起设置应用设置允许通知,用来接收应用内的推送消息;并且在设置完后返回页面可以监听到修改后的状态。场景二:当用户使用一些需要用户授权的api时(如访问获取联系人信息),若用户首次拒绝授权,则需要引导用户到权限设置页面能够
- 内核arp_rcv函数到ip_local_deliver_finish的具体调用流程
源远流长jerry
tcp/ip网络网络协议linux
场景:主机A(IP:192.168.1.10,MAC:AA:BB:CC:DD:EE:FF)首次向主机B(IP:192.168.1.20,MAC:11:22:33:44:55:66)发送数据,发送ARP请求获取主机B的MAC地址。流程:主机B收到主机A的ARP请求报文后,内核调用arp_rcv处理。arp_rcv解析报文,发现是ARP请求且目标IP是本机(192.168.1.20)。函数生成ARP应
- 2025年毕设ssm校园二手电瓶车交易网站论文+源码
SSM毕设程序源码JAVA
课程设计
本系统(程序+源码)带文档lw万字以上文末可获取一份本项目的java源码和数据库参考。系统程序文件列表开题报告内容选题背景关于校园二手交易平台的现有研究,多以综合类商品交易或书籍循环为主,而专门针对电瓶车这类高价值、强监管的校园二手交易研究较少。当前高校内电瓶车交易存在信息不对称、交易流程不规范、车牌管理脱节等问题,缺乏系统化的解决方案。部分高校虽尝试通过论坛或社群进行交易,但存在用户身份难核实、
- 【脑洞小剧场】零帧起手创业小公司之 新人入职的一天
Foyo Designer
技术职场小剧职场和发展程序人生学习方法改行学it创业创新远程工作程序员创富
点击查看小剧场合集https://blog.csdn.net/foyodesigner/category_12896948.html阳光明媚的早晨,段萌儿怀揣着对新工作的无限憧憬,踏入了这家充满未知的小公司。然而,她万万没想到,第一天上班就迎来了一场“惊悚”之旅。场景一:段萌儿的“惊悚”发现段萌儿,新入职的前端工程师,一早便迫不及待地打开了公司的代码库,想要一窥项目的“真容”。然而,当她看到代码库
- LeetCode——1864. 构成交替字符串需要的最小交换次数(Minimum Number of Swaps to Make the Binary...)[中等]——分析及代码(Java)
江南土豆
数据结构与算法LeetCodeJava题解
LeetCode——1864.构成交替字符串需要的最小交换次数[MinimumNumberofSwapstoMaketheBinaryStringAlternating][中等]——分析及代码[Java]一、题目二、分析及代码1.模拟(1)思路(2)代码(3)结果三、其他一、题目给你一个二进制字符串s,现需要将其转化为一个交替字符串。请你计算并返回转化所需的最小字符交换次数,如果无法完成转化,返回
- 美容院如何通过数据分析降低顾客流失率
shboka920702
信息可视化
美容行业的竞争日益激烈,顾客流失率居高不下已成为许多美容院面临的共同难题。根据《美容行业经营分析报告》的数据,美容行业的平均顾客流失率高达40%,这意味着每10位顾客中就有4位在一年内不再光顾。如何通过数据分析降低顾客流失率,成为美容院经营者亟需解决的问题。顾客流失的原因多种多样,主要包括服务质量、价格、环境、竞争对手等。根据《消费者行为研究》期刊的调查,超过50%的顾客流失是由于服务质量不达标,
- Python实现自动提取目标文档的大纲(13)
写python的鑫哥
Python办公自动化python自动提取Word文档大纲编号
前言本文是该专栏的第13篇,后面会持续分享Python办公自动化干货知识,记得关注。大纲是一种用于组织和呈现内容结构的工具,它通过层次化的形式展示信息的框架和重点。其通常用于规划、整理和总结文档、报告、演讲、论文或其他任何形式的写作和表达。它可以帮助作者或演讲者清晰地梳理思路,确保内容的逻辑性和连贯性,同时也便于读者或听众快速了解整体结构和重点内容。而本文,笔者也重点来讲述通过Python,如何来
- MM-RAIT:多模态检索增强生成(RAG)的认知革命
花生糖@
AIGC学习资料库人工智能深度学习机器学习RAGAI知识库
多模态检索增强生成(RAG)领域迎来了一项里程碑式的突破——MM-RAIT框架通过“评估-训练”双轮驱动,显著提升了主流视觉语言模型的RAG性能,增幅达27%至34%。这项技术不仅解决了多模态AI的认知断层问题,还首次赋予机器类似人类的知识处理能力,即“查资料-思逻辑-答精准”的能力。技术双引擎:从能力测绘到认知进化M2RAG:多模态能力的CT扫描仪M2RAG引入了首创的四维评估体系,覆盖图像描述
- python基于django/flask体育馆管理系统Django-SpringBoot-php-Node.js-flask
QQ_511008285
pythondjangoflaskspringbootphpnode.js
目录技术栈介绍具体实现截图系统设计研究方法:设计步骤设计流程核心代码部分展示研究方法详细视频演示试验方案论文大纲源码获取/详细视频演示技术栈介绍Django-SpringBoot-php-Node.js-flask本课题的研究方法和研究步骤基本合理,难度适中,本选题是学生所学专业知识的延续,符合学生专业发展方向,对于提高学生的基本知识和技能以及钻研能力有益。该学生能够在预定时间内完成该课题的设计。
- 7招教你掌握用DeepSeek辅助论文写作的提示词技巧
学境思源AcademicIdeas
学境思源AI写作ChatGPT人工智能
随着人工智能技术的快速发展,大模型(如DeepSeek、ChatGPT等)已经成为论文写作的重要辅助工具。合理运用提示词(Prompt),不仅能极大提高写作效率,还能辅助生成高质量的学术内容。今天的内容将分享如何利用DeepSeek的提示词技巧,助力论文写作。1.明确写作目标,让AI理解你的需求在使用大模型时,清晰的写作目标至关重要。一个好的提示词应当包括:写作主题、内容范围、格式要求、风格倾向等
- 基于Spring Boot+vue技术的导游系统设计与实现
除了菜一无所有!
springbootvue.js后端
论文下载【免费】基于SpringBoot+vue技术的导游系统设计与实现资源-CSDN文库摘要本研究背景主要聚焦于当前旅游业信息化、智能化的发展趋势。随着移动互联网的普及和人们出行方式的多样化,导游系统作为旅游服务的重要组成部分,亟需进行技术革新以提升用户体验和服务效率。本研究旨在利用SpringBoot后端框架与Vue前端框架,构建一个功能丰富、交互友好的导游系统。研究内容主要包括系统需求分析、
- 毕业论文需要进行几次AIGC检测?
kexiaoya2013
人工智能AIGC论文阅读论文笔记
每到毕业季,许多同学都会面临论文查重的困扰。尤其是今年Deepseek的爆火,学校对论文AIGC检测也越来越严格。那么,毕业论文AIGC检测究竟需要做几次呢?一、检测次数受哪些因素影响1、学校政策部分高校提供1-2次免费检测机会,有的则要求自己检测合格后才能提交。检测前,务必提前了解所在院校的检测规则。若学校未明确,建议至少自查2次(初稿+定稿)。2、AI率波动如果首次AI率检测结果超过或接近学校
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =