深入剖析java字节码

目录

1.Demo源码

2.字节码

3.class文件反编译java文件

4.字节码结构

4.1 魔数

​编辑4.2 版本号

4.3 常量池

4.3.1 常量池计数器

4.3.2 常量池表

​编辑4.3.3 常量类型和结构

4.3.4 常量解读

5.访问标识

6.类索引、父类索引、接口索引

7.字段表集合

 8.方法表集合

9.属性表集合


1.Demo源码

首先,编写一个简单的Java源码:

package com.april.test;

public class Demo {
    private int num = 1;

    public int add() {
        num = num + 2;
        return num;
    }
}
 


2.字节码


要运行一段Java源码,必须先将源码转换为class文件,class文件就是编译器编译之后供虚拟机解释执行的二进制字节码文件,可以通过IDE工具或者命令行去将源码编译成class文件。这里我们使用命令行去操作,运行下面命令:

javac Demo.java

就会生成一个Demo.class文件。
我们打开这个Demo.class文件看下。这里用到的是Notepad++,需要安装一个HEX-Editor插件。
字节码格式文件为16进制,在excel中打开,一个单元格就为一个字节

深入剖析java字节码_第1张图片


3.class文件反编译java文件


在分析class文件之前,我们先来看下将这个Demo.class反编译回Demo.java的结果,如下图所示:

 深入剖析java字节码_第2张图片


可以看到,回编译的源码比编写的代码多了一个空的构造函数和this关键字,为什么呢?先放下这个疑问,看完这篇分析,相信你就知道答案了。

4.字节码结构
 

从上面的字节码文件中我们可以看到,里面就是一堆的16进制字节。那么该如何解读呢?别急,我们先来看一张表:

深入剖析java字节码_第3张图片
这是一张Java字节码总的结构表,我们按照上面的顺序逐一进行解读就可以了。
首先,我们来说明一下:class文件只有两种数据类型:无符号数和表。如下表所示:

 深入剖析java字节码_第4张图片

深入剖析java字节码_第5张图片

上面各种具体的表的数据结构后面会详细说明,这里暂且不表。
好了,现在我们开始对那一堆的16进制进行解读。

4.1 魔数


从上面的总的结构图中可以看到,开头的4个字节表示的是魔数


Magic Number(魔数)

每个Class文件开头的4个字节的无符号整数称为魔数(Magic Number)
它的唯一作用是确定这个文件是否为一个能被虚拟机接受的有效合法的Class文件。即:魔数是Class文件的标识符。
魔数值固定为0xCAFEBABE。不会改变。
如果一个Class文件不以0xCAFEBABE开头,虚拟机在进行文件校验的时候就会直接抛出以下错误:

使用魔数而不是扩展名来进行识别主要是基于安全方面的考虑,因为文件扩展名可以随意地改动。
png格式的文件也有相同的魔数

 深入剖析java字节码_第6张图片


mp3格式也有相同的魔数

深入剖析java字节码_第7张图片
4.2 版本号


紧接着魔数的4个字节存储的是Class文件的版本号。同样也是4个字节。第5个和第6个字节所代表的含义就是编译的副版本号minor_version,而第7个和第8个字节就是编译的主版本号major_version。

 它们共同构成了class文件的格式版本号。譬如某个Class文件的主版本号为M,副版本号为m,那么这个Class文件的格式版本号就确定为M.m。


看看我们Demo字节码中的值:

深入剖析java字节码_第8张图片
前面两个字节是0x0000,也就是其值为0;
后面两个字节是0x0034,也就是其值为52.
所以上面的代码就是52.0版本来编译的,也就是jdk1.8.0。
版本号和Java编译器的对应关系如下表

深入剖析java字节码_第9张图片


Java 的版本号是从45开始的,JDK 1.1之后的每个JDK大版本发布主版本号向上加1

不同版本的Java编译器编译的Class文件对应的版本是不一样的。目前,高版本的Java虚拟机可以执行由低版本编译器生成的Class文件,但是低版本的Java虚拟机不能执行由高版本编译器生成的Class文件。否则JVM会抛出java.lang.UnsupportedClassVersionError异常。

在实际应用中,由于开发环境和生产环境的不同,可能会导致该问题的发生。因此,需要我们在开发时,特别注意开发编译的JDK版本和生产环境中的JDK版本是否一致。

虚拟机JDK版本为1.k(k>=2)时,对应的class文件格式版本号的范围为45.0-44+k0 (含两端)。

4.3 常量池


常量池是Class文件中内容最为丰富的区域之一。常量池对于Class文件中的字段和方法解析也有着至关重要的作用。
随着Java虚拟机的不断发展,常量池的内容也日渐丰富。可以说,常量池是整个Class文件的基石。
在版本号之后,紧跟着的是常量池的数量,以及若干个常量池表项。

常量池中常量的数量是不固定的,所以在常量池的入口需要放置一项u2类型的无符号数,代表常量池容量计数值(constant_pool_count)。与Java中语言习惯不一样的是,这个容量计数是从1而不是0开始的。


由上表可见,Class文件使用了一个前置的容量计数器(constant_pool_count)加若干个连续的数据项(constant_pool)的形式来描述常量池内容。我们把这一系列连续常量池数据称为常量池集合。

常量池表项中,用于存放编译时期生成的各种字面量和符号引用,这部分内容将在类加载后进入方法区的运行时常量池中存放


4.3.1 常量池计数器


接下来就是常量池了。由于常量池的数量不固定,时长时短,所以需要放置两个字节来表示常量池容量计数值。Demo的值为:


其值为0x0016,掐指一算,也就是22。需要注意的是,这实际上只有21项常量。索引为范围是1-21。为什么呢?

通常我们写代码时都是从0开始的,但是这里的常量池却是从1开始,因为它把第0项常量空出来了。这是为了满足后面某些指向常量池的索引值的数据在特定情况下需要表达“不引用任何一个常量池项目”的含义,这种情况可用索引值0来表示。

4.3.2 常量池表


constant_pool是一种表结构,以1 ~ constant_pool_count - 1为索引。表明了后面有多少个常量项。

常量池主要存放两大类常量:字面量(Literal)和符号引用(Symbolic References)

它包含了class文件结构及其子结构中引用的所有字符串常量、类或接口名、字段名和其他常量。常量池中的每一项都具备相同的特征。第1个字节作为类型标记,用于确定该项的格式,这个字节称为tag byte(标记字节、标签字节)。深入剖析java字节码_第10张图片
字面量和符号引用
在对这些常量解读前,我们需要搞清楚几个概念。
常量池主要存放两大类常量:字面量和符号引用。如下表:

深入剖析java字节码_第11张图片
全限定名
com/april/test/Demo这个就是类的全限定名,仅仅是把包名的".“替换成”/",为了使连续的多个全限定名之间不产生混淆,在使用时最后一般会加入一个“;”表示全限定名结束。 基本数据类型后面没有分号,引用数据类型全限定名后面有分号

 简单名称
简单名称是指没有类型和参数修饰的方法或者字段名称,上面例子中的类的add()方法和num字段的简单名称分别是add和num。

描述符
描述符的作用是用来描述字段的数据类型、方法的参数列表(包括数量、类型以及顺序)和返回值。根据描述符规则,基本数据类型(byte、char、double、float、int、long、short、boolean)以及代表无返回值的void类型都用一个大写字符来表示,而对象类型则用字符L加对象的全限定名来表示,详见下表:

深入剖析java字节码_第12张图片

对于数组类型,每一维度将使用一个前置的[字符来描述,如一个定义为java.lang.String[][]类型的二维数组,将被记录为:[[Ljava/lang/String;,,一个整型数组int[]被记录为[I。

 用描述符来描述方法时,按照先参数列表,后返回值的顺序描述,参数列表按照参数的严格顺序放在一组小括号“( )”之内。如方法java.lang.String toString()的描述符为( ) LJava/lang/String;,方法int abc(int[] x, int y)的描述符为([II) I。

如图创建的object数组就是[L+全限定名+“;”

深入剖析java字节码_第13张图片
4.3.3 常量类型和结构


常量池中的每一项都是一个表,其项目类型共有14种,如下表格所示:

深入剖析java字节码_第14张图片
这14种类型的结构各不相同,如下表格所示:

深入剖析java字节码_第15张图片 深入剖析java字节码_第16张图片


根据上图每个类型的描述我们也可以知道每个类型是用来描述常量池中哪些内容(主要是字面量、符号引用)的。比如:
CONSTANT_Integer_info是用来描述常量池中字面量信息的,而且只是整型字面量信息。
标志为15、16、18的常量项类型是用来支持动态语言调用的(jdk1.7时才加入的)。

细节说明:

CONSTANT_Class_info结构用于表示类或接口

CONSTAT_Fieldref_info、CONSTAHT_Methodref_infoF和lCONSTANIT_InterfaceMethodref_info结构表示字段、方汇和按口小法

CONSTANT_String_info结构用于表示示String类型的常量对象

CONSTANT_Integer_info和CONSTANT_Float_info表示4字节(int和float)的数值常量

CONSTANT_Long_info和CONSTAT_Double_info结构表示8字作(long和double)的数值常量

在class文件的常最池表中,所行的a字节常借均占两个表成员(项)的空问。如果一个CONSTAHT_Long_info和CNSTAHT_Double_info结构在常量池中的索引位n,则常量池中一个可用的索引位n+2,此时常量池长中索引为n+1的项仍然有效但必须视为不可用的。
CONSTANT_NameAndType_info结构用于表示字段或方法,但是和之前的3个结构不同,CONSTANT_NameAndType_info结构没有指明该字段或方法所属的类或接口。

CONSTANT_Utf8_info用于表示字符常量的值

CONSTANT_MethodHandle_info结构用于表示方法句柄

CONSTANT_MethodType_info结构表示方法类型

CONSTANT_InvokeDynamic_info结构表示invokedynamic指令所用到的引导方法(bootstrap method)、引导方法所用到的动态调用名称(dynamic invocation name)、参数和返回类型,并可以给引导方法传入一系列称为静态参数(static argument)的常量。

4.3.4 常量解读


我们根据上面的类型结构表来进行划分,跟据每个常量第一个字节来确定后面的位数,如果是字符串,那么第2第3个字节还要确定他的字符数,最终得到21项常量。每个红色记号为一项。

深入剖析java字节码_第17张图片
第1项
首先是第一个常量,看下它的标志位是什么,第一个值为0x0a,即10,查上面的表格可知,其对应的项目类型为CONSTANT_Methodref_info,即类中方法的符号引用。其结构为:


即后面4个字节都是它的内容,分别为两个索引项:


其中前两位的值为0x0004,即4,指向常量池第4项的索引;

 

第4项
第4项第一个字节的值为0x07,查上面表可知,其对应的项目类型为CONSTANT_Class_info,


第21项
后两位为0x0015,即21,指向常量池第21项的索引,第21项首位为0x01,可知是一个字符串,

 放在工具中可以看到第21项对应的字符长度为16,翻译出来为java/lang/object,这就对应了第4项指向的全限定名的索引

深入剖析java字节码_第18张图片
第18项
第一项的后两位是0x0012

 

后两位的值为0x0012,即18,指向常量池第18项的索引。


第18项第一个字节为0x0c,即12,两个字段一个描述方法名称一个秒杀返回值类型和形参列表 

 后面第一个字节是0x0007

第7项

第七项第一个字节0x01,也是一个字符串,这个字符串的长度为6个字节,翻译出来为

深入剖析java字节码_第19张图片

第8项
第二个字节是0x0008,即第8项


第8项的第一个字节为0x01,表示也是一个字符串,长度为3,表示()v,代码无参数的void方法。至此,第一个常量就解读完毕了,后面常量的分析方法雷同,不予分析。

 下图右侧为jclasslib中解码出来的21个常量


总结1
这14种表(或者常量项结构)的共同点是:表开始的第一位是一个u1类型的标志位(tag),代表当前这个常量项使用的是哪种表结构,即哪种常量类型。
在常量池列表中,CONSTANT_Utf8_info常量项是一种使用改进过的UTF-8编码格式来存储诸如文字字符串、类或者接口的全限定名、字段或者方法的简单名称以及描述符等常量字符串信息。
这14种常量项结构还有一个特点是,其中13个常量项占用的字节固定,只有CONSTANT_Utf8_info占用字节不固定,其大小由length决定。为什么呢?因为从常量池存放的内容可知,其存放的是字面量和符号引用,最终这些内容都会是一个字符串,这些字符串的大小是在编写程序时才确定,比如你定义一个类,类名可以取长取短,所以在没编译前,大小不固定,编译后,通过utf-8编码,就可以知道其长度。
总结2
常量池:可以理解为Class文件之中的资源仓库,它是Class文件结构中与其他项目关联最多的数据类型(后面的很多数据类型都会指向此处),也是占用Class文件空间最大的数据项目之一。
常量池中为什么要包含这些内容?Java代码在进行Javac编译的时候,并不像C和C++那样有“连接”这一步骤,而是在虚拟机加载C1ass文件的时候进行动态链接。也就是说,在Class文件中不会保存各个方法、字段的最终内存布局信息,因此这些字段、方法的符号引用不经过运行期转换的话无法得到真正的内存入口地址,也就无法直接被虚拟机使用。当虚拟机运行时,需要从常量池获得对应的符号引用,再在类创建时或运行时解析、翻译到具体的内存地址之中。关于类的创建和动态链接的内容,在虚拟机类加载过程时再进行详细讲解


5.访问标识


访问标识(access_flag、访问标志、访问标记)

 在常量池后,紧跟着访问标记。该标记使用两个字节表示,用于识别一些类或者接口层次的访问信息,包括:这个Class是类还是接口;是否定义为public类型;是否定义为abstract类型;如果是类的话,是否被声明为final等。各种访问标记如下所示:

深入剖析java字节码_第20张图片
类的访问权限通常为ACC_开头的常量。

每一种类型的表示都是通过设置访问标记的32位中的特定位来实现的。比如,若是public final的类,则该标记为ACC_PUBLIC | ACC_FINAL。

使用ACC_SUPER可以让类更准确地定位到父类的方法super.method(),现代编译器都会设置并且使用这个标记。


上面案例的访问标识是0x0021,是0x0001+0x0020

 补充说明:

带有ACC_INTERFACE标志的class文件表示的是接口而不是类,反之则表示的是类而不是接口。
如果一个class文件被设置了ACC_INTERFACE标志,那么同时也得设置ACC_ABSTRACT标志。同时它不能再设置ACC_FINAL、ACC_SUPER 或ACC_ENUM标志。
如果没有设置ACC_INTERFACE标志,那么这个class文件可以具有上表中除ACC_ANNOTATION外的其他所有标志。当然,ACC_FINAL和ACC_ABSTRACT这类互斥的标志除外。这两个标志不得同时设置。
ACC_SUPER标志用于确定类或接口里面的invokespecial指令使用的是哪一种执行语义。针对Java虚拟机指令集的编译器都应当设置这个标志。对于Java SE 8及后续版本来说,无论class文件中这个标志的实际值是什么,也不管class文件的版本号是多少,Java虚拟机都认为每个class文件均设置了ACC_SUPER标志。
ACC_SUPER标志是为了向后兼容由旧Java编译器所编译的代码而设计的。目前的ACC_SUPER标志在由JDK1.0.2之前的编译器所生成的access_flags中是没有确定含义的,如果设置了该标志,那么0racle的Java虚拟机实现会将其忽略。
ACC_SYNTHETIC标志意味着该类或接口是由编译器生成的,而不是由源代码生成的。
注解类型必须设置ACC_ANNOTATION标志。如果设置了ACC_ANNOTATION标志,那么也必须设置ACC_INTERFACE标志。
ACC_ENUM标志表明该类或其父类为枚举类型。


6.类索引、父类索引、接口索引


在访问标记后,会指定该类的类别、父类类别以及实现的接口,格式如下:

深入剖析java字节码_第21张图片
类只能单继承,但是可以实现多个接口,所有接口也是数组的形式

 这三项数据来确定这个类的继承关系:

类索引用于确定这个类的全限定名
父类索引用于确定这个类的父类的全限定名。由于Java语言不允许多重继承,所以父类索引只有一个,除了java.1ang.Object之外,所有的Java类都有父类,因此除了java.lang.Object外,所有Java类的父类索引都不为e。
接口索引集合就用来描述这个类实现了哪些接口,这些被实现的接口将按implements语句(如果这个类本身是一个接口,则应当是extends语句)后的接口顺序从左到右排列在接口索引集合中。
this_class(类索引)
2字节无符号整数,指向常量池的索引。它提供了类的全限定名,如com/atguigu/java1/Demo。this_class的值必须是对常量池表中某项的一个有效索引值。常量池在这个索引处的成员必须为CONSTANT_Class_info类型结构体,该结构体表示这个class文件所定义的类或接口。

super_class(父类索引)
2字节无符号整数,指向常量池的索引。它提供了当前类的父类的全限定名。如果我们没有继承任何类,其默认继承的是java/lang/object类。同时,由于Java不支持多继承,所以其父类只有一个。

super_class指向的父类不能是final。

interfaces
指向常量池索引集合,它提供了一个符号引用到所有已实现的接口

由于一个类可以实现多个接口,因此需要以数组形式保存多个接口的索引,表示接口的每个索引也是一个指向常量池的CONSTANT_Class(当然这里就必须是接口,而不是类)。

Ⅰ. interfaces_count(接口计数器)
interfaces_count项的值表示当前类或接口的直接超接口数量。

Ⅱ. interfaces[](接口索引集合)
interfaces[]中每个成员的值必须是对常量池表中某项的有效索引值,它的长度为interfaces_count。每个成员interfaces[i]必须为CONSTANT_Class_info结构,其中0 <= i < interfaces_count。在interfaces[]中,各成员所表示的接口顺序和对应的源代码中给定的接口顺序(从左至右)一样,即interfaces[0]对应的是源代码中最左边的接口。

深入剖析java字节码_第22张图片
都是指向常量池的索引,例如第一个类索引0x0003去找常量池的第3项0x070014,0x0014即20,再去找第20项,翻译过来就是Demo的全限定名

 深入剖析java字节码_第23张图片


7.字段表集合


fields
用于描述接口或类中声明的变量。字段(field)包括类级变量以及实例级变量,但是不包括方法内部、代码块内部声明的局部变量。
字段叫什么名字、字段被定义为什么数据类型,这些都是无法固定的,只能引用常量池中的常量来描述。
它指向常量池索引集合,它描述了每个字段的完整信息。比如字段的标识符、访问修饰符(public、private或protected)、是类变量还是实例变量(static修饰符)、是否是常量(final修饰符)等。

注意事项:

字段表集合中不会列出从父类或者实现的接口中继承而来的字段,但有可能列出原本Java代码之中不存在的字段。譬如在内部类中为了保持对外部类的访问性,会自动添加指向外部类实例的字段。
在Java语言中字段是无法重载的,两个字段的数据类型、修饰符不管是否相同,都必须使用不一样的名称,但是对于字节码来讲,如果两个字段的描述符不一致,那字段重名就是合法的。
字段计数器
fields_count(字段计数器)

fields_count的值表示当前class文件fields表的成员个数。使用两个字节来表示。

fields表中每个成员都是一个field_info结构,用于表示该类或接口所声明的所有类字段或者实例字段,不包括方法内部声明的变量,也不包括从父类或父接口继承的那些字段。

深入剖析java字节码_第24张图片
字段表

深入剖析java字节码_第25张图片

上图字段计数器是0x0001只有一个字段

Ⅰ. 字段表访问标识
我们知道,一个字段可以被各种关键字去修饰,比如:作用域修饰符(public、private、protected)、static修饰符、final修饰符、volatile修饰符等等。因此,其可像类的访问标志那样,使用一些标志来标记字段。字段的访问标志有如下这些:

标志名称    标志值    含义
ACC_PUBLIC    0x0001    字段是否为public
ACC_PRIVATE    0x0002    字段是否为private
ACC_PROTECTED    0x0004    字段是否为protected
ACC_STATIC    0x0008    字段是否为static
ACC_FINAL    0x0010    字段是否为final
ACC_VOLATILE    0x0040    字段是否为volatile
ACC_TRANSTENT    0x0080    字段是否为transient
ACC_SYNCHETIC    0x1000    字段是否为由编译器自动产生
ACC_ENUM    0x4000    字段是否为enum
Ⅱ. 字段名索引
0x0005对应第5项常量,
,对应是utf8编码,翻译过来就是num

深入剖析java字节码_第26张图片

Ⅲ. 描述符索引
描述符的作用是用来描述字段的数据类型、方法的参数列表(包括数量、类型以及顺序)和返回值。根据描述符规则,基本数据类型(byte,char,double,float,int,long,short,boolean)及代表无返回值的void类型都用一个大写字符来表示,而对象则用字符L加对象的全限定名来表示,如下所示:

深入剖析java字节码_第27张图片
Ⅳ .属性表集合
上图的值为0x0000,表示没有,后面的字段就结束了。加final的常量才有初始化的信息

深入剖析java字节码_第28张图片


一个字段还可能拥有一些属性,用于存储更多的额外信息。比如初始化值、一些注释信息等。属性个数存放在attribute_count中,属性具体内容存放在attributes数组中。

// 以常量属性为例,结构为:

说明:对于常量属性而言,attribute_length值恒为2。

 8.方法表集合


methods:指向常量池索引集合,它完整描述了每个方法的签名。

在字节码文件中,每一个method_info项都对应着一个类或者接口中的方法信息。比如方法的访问修饰符(public、private或protected),方法的返回值类型以及方法的参数信息等。
如果这个方法不是抽象的或者不是native的,那么字节码中会体现出来。
一方面,methods表只描述当前类或接口中声明的方法,不包括从父类或父接口继承的方法。另一方面,methods表有可能会出现由编译器自动添加的方法,最典型的便是编译器产生的方法信息(比如:类(接口)初始化方法()和实例初始化方法())。
使用注意事项:
在Java语言中,要重载(Overload)一个方法,除了要与原方法具有相同的简单名称之外,还要求必须拥有一个与原方法不同的特征签名,特征签名就是一个方法中各个参数在常量池中的字段符号引用的集合,也就是因为返回值不会包含在特征签名之中,因此Java语言里无法仅仅依靠返回值的不同来对一个已有方法进行重载。但在Class文件格式中,特征签名的范围更大一些,只要描述符不是完全一致的两个方法就可以共存。也就是说,如果两个方法有相同的名称和特征签名,但返回值不同,那么也是可以合法共存于同一个class文件中。

也就是说,尽管Java语法规范并不允许在一个类或者接口中声明多个方法签名相同的方法,但是和Java语法规范相反,字节码文件中却恰恰允许存放多个方法签名相同的方法,唯一的条件就是这些方法之间的返回值不能相同。

深入剖析java字节码_第29张图片
方法计数器
methods_count(方法计数器)

methods_count的值表示当前class文件methods表的成员个数。使用两个字节来表示。

methods表中每个成员都是一个method_info结构。

方法表
methods表中的每个成员都必须是一个method_info结构,用于表示当前类或接口中某个方法的完整描述。如果某个method_info结构的access_flags项既没有设置ACC_NATIVE标志也没有设置ACC_ABSTRACT标志,那么该结构中也应包含实现这个方法所用的Java虚拟机指令。

method_info结构可以表示类和接口中定义的所有方法,包括实例方法、类方法、实例初始化方法和类或接口初始化方法

方法表的结构实际跟字段表是一样的,方法表结构如下:

深入剖析java字节码_第30张图片
Ⅰ.方法表访问标识
跟字段表一样,方法表也有访问标志,而且他们的标志有部分相同,部分则不同,方法表的具体访问标志如下:

深入剖析java字节码_第31张图片 Ⅱ. 方法名索引
与字段名索引类似

Ⅲ. 描述符索引
与字段描述索引类似

9.属性表集合


属性计数器
attributes_count的值表示当前class文件属性表的成员个数。属性表中每一项都是一个attribute_info结构。

属性表
attributes[](属性表)

属性表的每个项的值必须是attribute_info结构。属性表的结构比较灵活,各种不同的属性只要满足以下结构即可,每种属性表都要遵循下面的结构,每种属性表后又跟着自己的属性结构。

属性的通用格式

深入剖析java字节码_第32张图片
属性类型 

属性表实际上可以有很多类型,上面看到的Code属性只是其中一种,Java8里面定义了23种属性。下面这些是虚拟机中预定义的属性:

深入剖析java字节码_第33张图片

深入剖析java字节码_第34张图片
或者(查看官网)

 深入剖析java字节码_第35张图片

 部分属性详解

① ConstantValue属性

ConstantValue属性表示一个常量字段的值。位于field_info结构的属性表中。


② Deprecated 属性


③ Code属性

 Code属性就是存放方法体里面的代码。但是,并非所有方法表都有Code属性。像接口或者抽象方法,他们没有具体的方法体,因此也就不会有Code属性了。Code属性表的结构,如下图:

深入剖析java字节码_第36张图片
可以看到:Code属性表的前两项跟属性表是一致的,即Code属性表遵循属性表的结构,后面那些则是他自定义的结构。

 ④ InnerClasses 属性

为了方便说明特别定义一个表示类或接口的Class格式为C。如果C的常量池中包含某个CONSTANT_Class_info成员,且这个成员所表示的类或接口不属于任何一个包,那么C的ClassFile结构的属性表中就必须含有对应的InnerClasses属性。InnerClasses属性是在JDK1.1中为了支持内部类和内部接口而引入的,位于ClassFile结构的属性表。

⑤ LineNumberTable属性

LineNumberTable属性是可选变长属性,位于Code结构的属性表。

LineNumberTable属性是用来描述Java源码行号与字节码行号之间的对应关系。这个属性可以用来在调试的时候定位代码执行的行数。

start_pc,即字节码行号;line_number,即Java源代码行号。
在Code属性的属性表中,LineNumberTable属性可以按照任意顺序出现,此外,多个LineNumberTable属性可以共同表示一个行号在源文件中表示的内容,即LineNumberTable属性不需要与源文件的行一一对应。

深入剖析java字节码_第37张图片
⑥ LocalVariableTable属性

 LocalVariableTable是可选变长属性,位于Code属性的属性表中。它被调试器用于确定方法在执行过程中局部变量的信息。在Code属性的属性表中,LocalVariableTable属性可以按照任意顺序出现。Code属性中的每个局部变量最多只能有一个LocalVariableTable属性。

start pc + length表示这个变量在字节码中的生命周期起始和结束的偏移位置(this生命周期从头e到结尾10)
index就是这个变量在局部变量表中的槽位(槽位可复用)
name就是变量名
Descriptor表示局部变量类型描述
深入剖析java字节码_第38张图片
⑦ Signature属性

 Signature属性是可选的定长属性,位于ClassFile,field_info或method_info结构的属性表中。在Java语言中,任何类、接口、初始化方法或成员的泛型签名如果包含了类型变量(Type Variables)或参数化类型(Parameterized Types),则Signature属性会为它记录泛型签名信息。

⑧ SourceFile属性

SourceFile属性结构

深入剖析java字节码_第39张图片
可以看到,其长度总是固定的8个字节。
为什么attribute_length的长度为2呢,官网解释了必须为2

 ⑨ 其他属性

Java虚拟机中预定义的属性有20多个,这里就不一一介绍了,通过上面几个属性的介绍,只要领会其精髓,其他属性的解读也是易如反掌。

案例分析
由字节码可知,属性名索引两个字节0x0009,对应的是code,所以后面的字节为code属性的结构

深入剖析java字节码_第40张图片
code属性表的结构

深入剖析java字节码_第41张图片

 深入剖析java字节码_第42张图片

 属性名0x0009,对应code
属性长度0x00000038,对应的是54个字节,所以到第一个红色0x00都是code属性
操作数栈最大深度0x0002,对应为2
局部变量表所需的存储空间0x0001,对应为1
字节码指令长度0x0000000a,对应为10个字节,但是通过jclasslib来看只有6个指令

深入剖析java字节码_第43张图片
逐行分析,点进去第一条指令对应的官方文档,可以看到aload_0对应的是0x2a,刚好与第一个字节对应,以此类推,第二个指令对应0xb7,在第二个指令invokespecial后,#1对应了一个常量池索引0x0001,我们上面分析过刚好对应java/lang/Object,所以下面#2也是两个字节对应一个索引,刚好10个字节长度。

深入剖析java字节码_第44张图片


属性计数器为2,该方法还有两个属性,是** LineNumberTable和LocalVariableTable**

深入剖析java字节码_第45张图片
他们都遵循属性的格式

深入剖析java字节码_第46张图片

深入剖析java字节码_第47张图片

深入剖析java字节码_第48张图片

line_number_table_length为2

深入剖析java字节码_第49张图片

 第2个是LocalVariableTable

深入剖析java字节码_第50张图片

深入剖析java字节码_第51张图片

最后一行为sourcefile属性,也遵从属性格式

深入剖析java字节码_第52张图片

你可能感兴趣的:(java,字节码,魔数,常量池,class,jvm)