Hive SQL优化

Hive SQL优化

案例一:

1.1 将要执行的查询(执行了 1个多小时才出结果):

SELECT dt as DATA_DATE,STRATEGY,AB_GROUP,SOURCE,
    count(distinct case when lower(event) not like '%push%' and event!='corner_mark_show' then udid else null end) as DAU,
    count(case when event='client_show' then 1 else null end) as TOTAL_VSHOW,
    count(distinct case when event='client_show' then vid else null end) as TOTAL_VIDEO_VSHOW,
    count(case when event='video_play' then 1 else null end) as TOTAL_VV_VP,
    count(distinct case when event='video_play' then udid else null end) as TOTAL_USERS_VP,
    count(case when event='effective_play' then 1 else null end) as TOTAL_VV_EP,
    count(distinct case when event='effective_play' then udid else null end) as TOTAL_USERS_EP,
    sum(case when event='video_over' then duration else 0 end) as TOTAL_DURATION,
    count(case when event='video_over' then 1 else null end) as TOTAL_VOVER,
    sum(case when event='video_over' then play_cnts else 0 end) as TOTAL_VOVER_PCNTS,
    count(case when event='push_video_clk' then 1 else null end) as TOTAL_PUSH_VC,
    count(distinct case when event='app_start' and body_source = 'push' then udid else null end) as TOTAL_PUSH_START,
    count(case when event='post_comment' then 1 else null end) as TOTAL_REPLY,
    count(distinct case when event='post_comment' then udid else null end) as TOTAL_USERS_REPLY
    FROM dwb_v8sp_tmp.base_report_bystrategy_byab_source_column_zkl
group by dt,strategy,ab_group,source;

1.2 查询语句涉及到的表有 7.7亿+ 数据。(查询如下)

jdbc:hive2://ks-hdp-master-01.dns.rightpad (default)> select count(*) from dwb_v8sp_tmp.base_report_bystrategy_byab_source_column_zkl;

Hive SQL优化_第1张图片

1.3 优化思路:既然将要执行的查询是按照 dt, strategy, ab_group, source 这4个字段分组,那么再建表的时候,就按这四个字段中的N个(1或2或3或4)个字段组合分区,直接让count(distinct xx)之类的查询定位到“更少的数据子集”,其执行效率就应该更高了(不需要每个子任务均从7.7亿+的数据中(去重)统计)。

1.4 先看每个字段将会有多少分区(因为 Hive 表分区也不宜过多,一般一个查询语句涉及到的 hive分区 应该控制在2K内)

jdbc:hive2://ks-hdp-master-01.dns.rightpad (default)> select count(distinct dt) as dis_dt, count(distinct strategy) as dis_strategy, count(distinct ab_group) as dis_ab_group, count(distinct source) as dis_sourcefrom dwb_v8sp_tmp.base_report_bystrategy_byab_source_column_zkl;

Hive SQL优化_第2张图片

[hue@ks-hdp-client-v02 10:55:08 /usr/local/hue]$ pythonPython 2.7.12 (default, Dec  4 2017, 14:50:18)[GCC 5.4.0 20160609] on linux2Type "help", "copyright", "credits" or "license" for more information.>>> 2*14*722016-- 2016 个分区还可以接受。

1.5 根据原表,新建分区表,并将原表数据插入新表:

show create table dwb_v8sp_tmp.base_report_bystrategy_byab_source_column_zkl;
jdbc:hive2://ks-hdp-master-01.dns.rightpad (default)> show create table dwb_v8sp_tmp.base_repo

Hive SQL优化_第3张图片

创建新表:按 dt,source,stragegy,ab_group 分区(注意先后顺序,一般习惯分区数越少的越靠前,根据1.5的查询可知:dt=1,source=2,strategy=14,ab_group=72)

create external table `dwb_v8sp_tmp.base_report_bystrategy_byab_source_column_lym`(  
    event string,  
    udid string,  
    vid string,  
    duration string,  
    body_source string,  
    play_cnts string
)
    PARTITIONED BY (  
        dt string,  
        source string,  
        strategy string,  
        ab_group string
    );

将原表数据插入新表:

insert into `dwb_v8sp_tmp.base_report_bystrategy_byab_source_column_lym` partition(dt,source,strategy,ab_group)select event,udid,vid,duration,body_source,play_cnts,dt,source,strategy,ab_groupfrom `dwb_v8sp_tmp.base_report_bystrategy_byab_source_column_zkl`;

核对两表的数据是否一致:

Hive SQL优化_第4张图片

1.6 基于新表执行查询(执行5分钟出结果):

Hive SQL优化_第5张图片

案例二:

问题描述:一个复杂的SQL,查询执行一段时间后报错:基本上是查不出来;

分析函数对于大表来说不是 hive的强项,这个时候我们将其分解成很多子集,并且合理利用 hive 分区表的优势,然后去 join 。

create table bi_tmp.aloha_UserLoyalty_190301_190303 as     
	select aid, imei, idfa, udid, event, duration, dt, time_local, hour, source,         
	first_value(time_local) over(partition by udid, event order by time_local) as first_time,        
	last_value(time_local) over(partition by udid, event order by time_local) as last_time,        
	count(time_local) over(partition by udid, event, dt) as event_count_per_day,        
	sum(duration) over(partition by udid, event, dt) as event_duration_each_day    from dwb_v8sp.event_column_info_new_hour    
	where event in ('app_start', 'app_exit', 'effective_play', 'share_succ', 'like', 'unlike', 'like_comment', 'unlike_comment', 'comment_success')        and dt >= '2019-03-01' and dt <= '2019-03-03';
	
select count(*) 
from dwb_v8sp.event_column_info_new_hour
where event in ('app_start', 'app_exit', 'effective_play', 'share_succ', 'like', 'unlike', 'like_comment', 'unlike_comment', 'comment_success')and dt >= '2019-03-01' and dt <= '2019-03-03';

Hive SQL优化_第6张图片

select count(distinct event) as dis_event
from dwb_v8sp.event_column_info_new_hour
where event in ('app_start', 'app_exit', 'effective_play', 'share_succ', 'like', 'unlike', 'like_comment', 'unlike_comment', 'comment_success')
and dt >= '2019-03-01' and dt <= '2019-03-03';

分解成三个子集,并保存到三张表:bi_tmp.zyt1,bi_tmp.zyt2,bi_tmp.zyt3

-- drop table if exists bi_tmp.zyt1;
create table bi_tmp.zyt1 partitioned by(event)
as
select udid,        
	min(time_local) as first_time,       
	max(time_local) as last_time,       
	event
from dwb_v8sp.event_column_info_new_hour
where event in ('app_start', 'app_exit', 'effective_play', 'share_succ', 'like', 'unlike', 'like_comment', 'unlike_comment', 'comment_success')and dt >= '2019-03-01' and dt <= '2019-03-03'
group by udid, event;

-- drop table if exists bi_tmp.zyt2 purge;
create table bi_tmp.zyt2 partitioned by(dt,event)
as
select udid,        
	count(time_local) as event_count_per_day,       
	sum(duration) as event_duration_each_day,       
	dt,       
	event
from dwb_v8sp.event_column_info_new_hour
where event in ('app_start', 'app_exit', 'effective_play', 'share_succ', 'like', 'unlike', 'like_comment', 'unlike_comment', 'comment_success')and dt >= '2019-03-01' and dt <= '2019-03-03'
group by udid, dt, event;

create table bi_tmp.zyt3 partitioned by(dt,event)
as 
select aid, imei, idfa, udid, duration, time_local, hour, source, dt, event
from dwb_v8sp.event_column_info_new_hour t3    
	where event in ('app_start', 'app_exit', 'effective_play', 'share_succ', 'like', 'unlike', 'like_comment', 'unlike_comment',         'comment_success')      and dt >= '2019-03-01' and dt <= '2019-03-03';
	
-- 插入目标表:
create table bi_tmp.aloha_UserLoyalty_190301_190303 
as     
    select t3.aid, t3.imei, t3.idfa, t3.udid, t3.event, t3.duration, t3.dt, t3.time_local, t3.hour, t3.source,         
    t1.first_time,        
    t1.last_time,       
    t2.event_count_per_day,        
    t2.event_duration_each_day    
    from bi_tmp.zyt1 t1 
    join bi_tmp.zyt2 t2 on t1.event=t2.event and t1.udid=t2.udid    
    join bi_tmp.zyt3 t3 on t2.dt=t3.dt and t2.event= t3.event and t2.udid=t3.udid;
    
-- 验证数据:(与上面的查询记录行数对的上)

图片

案例三:

如下SQL,用到了 PERCENTILE_APPROX 函数,问题描述:如下SQL,用到了 PERCENTILE_APPROX 函数,个人初步分析认为:由于用到该函数的次数太多,导致性能严重下降。

我仔细查了一下该函数,发现:它是支持“数组传参”的,那么就不难找到优化该SQL的方法了。

  • percentile函数

    • 使用方法:percentile(col,p)
    • percentile要求输入的字段必须是int类型的
  • percentile_approx函数

    • 使用方法:percentile_approx(col,p)

    • percentile_approx则是数值类似类型

    • percentile_appeox还有一个参数B:percentile_approx(col,p,B)。参数B控制内存消耗的近似精度,B越大,结果的准确度越高。默认10000。当col字段钟的distinct值的个数小于B时,结果为准确的百分位数。

    • 要求多个分位数,可以把p换为array(p1,p2,p3…p1,p2,p3…),即percentile_approx(col,array(0.05,0.5,0.95),9999)

    • 还可以加个转换:percentile_approx(cast(col as double),array(0.05,0.5,0.95),9999)

      输出结果:[0.0,4001.0,4061.0]

    • 或者:explode(percentile_approx(cast(col as double),array(0.05,0.5,0.95),9999))as percentile

Hive SQL优化_第7张图片

3.1 原SQL性能测试:

Hive SQL优化_第8张图片

3.2 优化后的SQL,性能测试:

Hive SQL优化_第9张图片

优化后的SQL,性能提升了4倍多。

Hive SQL优化_第10张图片

你可能感兴趣的:(hive,sql)