- 《高等数学》(同济大学·第7版)第七章 微分方程 第四节一阶线性微分方程
没有女朋友的程序员
高等数学
好的,这是将您提供的高等数学教案内容中的LaTeX公式转换为纯文本格式后的版本:同学们好!今天我们学习《高等数学》第七章第四节“一阶线性微分方程”。这是一阶微分方程中最重要、应用最广泛的一类方程,掌握它的解法对后续学习(如微分方程的应用、高阶线性微分方程)至关重要。我会用最通俗的语言,结合大量例子,帮你彻底掌握“一阶线性微分方程”的定义、解法和核心思想。一、一阶线性微分方程的定义:长什么样?1.标
- 蔡高厅老师 - 高等数学-阅读笔记 - 01 - 前言、函数【视频第01、02、03、】
Franklin
数学线性代数
高等数学前言;196学时,每周6课主要内容:上册一元、多元函数数,微分学、积分学、矢量代数、空间解析几何无穷级数、微分方程,多元函数微分学和积分学目的:高等数学3基:1高等数学的基本知识2高度数学的基本理论3高等数学的基本计算方法提高数学素养培养:抽象思维、逻辑推理、辩证的思想方法、空间想象能力、分析问题、解决问题的能力为进一步学习打下必要的学习基础和初等数学不同,研究的不是常量而是变量,变量和变
- 《高等数学》(同济大学·第7版)第九章 多元函数微分法及其应用第四节隐函数的求导公式
没有女朋友的程序员
高等数学
以下是将含LaTeX标记的内容转为纯文本的版本:同学们好!今天我们学习《高等数学》(同济·第7版)第九章第四节隐函数的求导公式。我会用最通俗的语言和具体例子,带你彻底理解这个核心概念。如果中途有疑问,随时提出,我们一步步解决!一、隐函数是什么?为什么需要它?1.显函数vs隐函数显函数:直接写出因变量和自变量的关系,例如:y=f(x)或z=f(x,y)隐函数:因变量和自变量的关系隐含在一个方程中,例
- 高等数学》(同济大学·第7版)第七章 微分方程 第五节可降阶的高阶微分方程
没有女朋友的程序员
高等数学
好的,这是将您提供的高等数学第七章第五节教案内容中的LaTeX公式转换为纯文本格式后的版本:同学们好!今天我们学习《高等数学》第七章第五节“可降阶的高阶微分方程”。高阶微分方程(如二阶、三阶)直接求解困难,但许多方程可以通过“降阶”转化为低阶方程(如一阶方程)来求解。本节重点讲解三类可降阶的高阶微分方程,掌握它们的解法对后续学习至关重要。我会用最通俗的语言,结合大量例子,帮你彻底掌握。一、可降阶高
- 《高等数学》(同济大学·第7版)第九章 多元函数微分法及其应用第三节多元复合函数的求导法则
没有女朋友的程序员
高等数学
以下是将含LaTeX标记的内容转为纯文本的版本:同学们好!今天我们学习《高等数学》(同济·第7版)第九章第三节多元复合函数求导法则。我会用“买菜路线”和“温度变化”两个生活例子,带你彻底理解这个核心概念。如果中途有疑问,随时提出,我们一步步解决!一、从买菜路线说起:为什么需要链式法则?场景:小明从家出发,先骑车到菜市场(路程x公里),再步行到超市(路程y公里)。已知:骑车速度v_x=20km/h,
- 高等数学》(同济大学·第7版)第七章 微分方程 第三节齐次方程
没有女朋友的程序员
高等数学
同学们好!今天我们学习《高等数学》第七章第三节“齐次方程”。这是微分方程中一类重要的可转化方程,掌握它的解法对后续学习(如线性微分方程)有重要意义。我会用最通俗的语言,结合大量例子,帮你彻底掌握“齐次方程”的定义、特点和解法。一、齐次方程的定义:什么是“齐次”?1.齐次方程的两种含义在微积分中,“齐次”有两种常见含义,但这里我们特指一阶微分方程中的齐次方程:若一阶微分方程可以写成以下形式:dydx
- 【机器学习】数学基础——张量(傻瓜篇)
一叶千舟
深度学习【理论】机器学习人工智能
目录前言一、张量的定义1.标量(0维张量)2.向量(1维张量)3.矩阵(2维张量)4.高阶张量(≥3维张量)二、张量的数学表示2.1张量表示法示例三、张量的运算3.1常见张量运算四、张量在深度学习中的应用4.1PyTorch示例:张量在神经网络中的运用五、总结:张量的多维世界延伸阅读前言在机器学习、深度学习以及物理学中,张量是一个至关重要的概念。无论是在人工智能领域的神经网络中,还是在高等数学、物
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- ICBDDM2025:大数据与数字化管理前沿峰会
鸭鸭鸭进京赶烤
学术会议大数据图像处理计算机视觉AI编程人工智能机器人考研
在选择大学专业时,可以先从自身兴趣、能力和职业规划出发,初步确定几个感兴趣的领域。然后结合外部环境因素,如专业前景、教育资源和就业情况等,对这些专业进行深入的分析和比较。大数据专业:是一个热门且前沿的学科领域,它涉及到数据的收集、存储、处理、分析和应用等多个方面。课程设置基础课程数学基础:高等数学、线性代数、概率论与数理统计等。这些课程为大数据分析提供了必要的数学工具,例如线性代数在机器学习算法中
- 《开窍·开悟·开智》读书笔记
mitt_
笔记
1.打破常规思维,不被习惯束缚去看待事情。2.真是自己的情绪,别让负面情绪主导行为。3.真诚倾听他人观点,别急于表达自己。4.制定清晰计划,合理分配时间,提高效率。5.全面认识自己,挖掘潜在优势和隐藏不足。6.运用一些方法训练专注力,如限时任务。7.用积极乐观的心态,主动迎接挑战。8.与他人交往多付出真心,而非只考虑自身利益。9.树立终身学习观念,不断更新知识储备。10.面对压力通过运动,倾诉等方
- 数学与加密货币:区块链技术的数学基础
AI天才研究院
计算ChatGPTAI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《数学与加密货币:区块链技术的数学基础》关键词数学基础加密货币区块链技术密码学分布式账本摘要本文旨在探讨数学在加密货币和区块链技术中的基础性作用。通过逐步分析,我们将深入理解数学概念如何支持加密货币的安全性、去中心化和不可篡改性。文章将涵盖初等数学和高等数学的应用,以及算法原理的讲解,帮助读者了解数学与加密货币的紧密联系。目录大纲背景介绍1.1.引言1.2.加密货币与区块链的基本概念数学基础2.1
- AI大模型从0到1记录学习 大模型技术之数学基础 day26
Gsen2819
算法人工智能大模型人工智能学习算法机器学习目标检测深度学习
高等数学导数导数的概念导数(derivative)是微积分中的一个概念。函数在某一点的导数是指这个函数在这一点附近的变化率(即函数在这一点的切线斜率)。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函数输出值的增量∆y与自变量增量∆x的比值在∆x趋于0时的极限如果存在,即为f在x_0处的导数,记作f’(x_0)、df/dx(x_0)或〖df/d
- 【web js逆向分析易盾滑块fp参数】逆向分析网易易盾滑块的 fp 参数,仅供学习交流
小木_.
JavaScriptjavascript分享逆向分析网易滑块网易滑块分析web逆向
文章日期:2025.2.4使用工具:Node.js本章知识:分析易盾滑块的fp参数生成version:2.28.0v:v1.1文章难度:简单文章全程已做去敏处理!!!【需要做的可联系我】AES解密处理(直接解密即可)(crypto-js.js标准算法):在线AES加解密工具声明:为了保护本作者可以持续的更新知识,此次逆向出的网站源码代码不予分享,有需要可以直接找我。但作者所写出的代码(非网页源代码
- 【概率论与数理统计】第二章 随机变量及其分布(1)
Arthur古德曼
概率论与数理统计概率论随机变量分布离散型连续型夏明亮
第二章随机变量及其分布第一章种学习了随机现象、随机试验、随机事件等概念,讨论了随机事件的关系、运算以及概率;且只考虑了个别事件下的频率问题。接下来,进一步第需要建立随机试验结果与实数的对应关系,这类似于函数的映射,我们称之为随机变量,以便使用高等数学的方法来研究随机试验。1离散型随机变量1.1随机变量的概念随机变量的数学定义:**定义1:**设EEE为随机试验,Ω\OmegaΩ为其样本空间,若对于
- 两矩阵相乘的秩的性质_浅析数学中的行列式与矩阵
weixin_39851977
两矩阵相乘的秩的性质利用逆矩阵解线性方程组
引言线性代数(高等代数)是进入大学之后学习代数的起点,和数学分析,解析几何并称数学三大基础课。需要注意的是,一般理工科学的是线性代数,数学系学的是高等代数,高等代数相比于线性代数,除了内容上增加了多项式以外,难度和深度也有增加。当然,高等数学和数学分析所学的内容也有所区别,这里就不再赘述。以如今的数学观点来看,线性代数几乎无处不在,它的概念与方法已经渗透到和数学相关的方方面面,这也正是为什么线性代
- 【大模型应用笔记】检索增强生成(RAG)是什么?
基础介绍RAG(RetrievalAugmentedGeneration)(检索增强生成):给模型配备一个"外部记忆库",类比于像给秘书配备了一个随时可查的资料库。例如,企业客服系统可以基于最新的产品手册来回答用户问题。优势是提高答案准确性,减少幻觉,支持实时更新知识。主要步骤包括:检索:从知识库中找到相关文档增强:将检索到的信息注入到prompt中生成:模型基于增强后的上下文生成回答知识预处理-
- 大模型笔记:RAG(Retrieval Augmented Generation,检索增强生成)
1大模型知识更新的困境大模型的知识更新是很困难的,主要原因在于:训练数据集固定,一旦训练完成就很难再通过继续训练来更新其知识参数量巨大,随时进行fine-tuning需要消耗大量的资源,并且需要相当长的时间LLM的知识是编码在数百亿个参数中的,无法直接查询或编辑其中的知识图谱——>LLM的知识具有静态、封闭和有限的特点。——>为了赋予LLM持续学习和获取新知识的能力,RAG应运而生2RAG介绍这是
- 李永乐复习全书高等数学 第二章 一元函数微分学
古月忻
考研数学一高等数学刷题错题记录#考研数学一高等数学复习全书高等数学复习全书考研其他
2.1 导数与微分,导数的计算例2 设g(x)g(x)g(x)在x=0x=0x=0处存在二阶导数,且g(0)=1,g′(0)=2,g′′(0)=1g(0)=1,g'(0)=2,g''(0)=1g(0)=1,g′(0)=2,g′′(0)=1,并设f(x)={g(x)−e2xx,x≠00,x=0,f(x)=\begin{cases}\cfrac{g(x)-e^{2x}}{x},&x\ne0\\0,
- 什么是wiki 怎么生成wiki
黄卷青灯77
wiki
1.wiki是什么东西Wiki(维基)是一种基于网页的协作平台,允许用户共同创建、编辑和组织内容。它的核心特点是多人协作和内容共享,用户可以通过简单的编辑工具快速添加、修改或删除页面内容。Wiki的名字来源于夏威夷语“wikiwiki”,意为“快速”或“敏捷”。Wiki的主要特点多人协作:Wiki的核心功能是允许多人共同编辑页面,这使得团队成员可以方便地共享和更新知识。适用于团队项目、知识管理、文
- 《高等数学》(同济大学·第7版)第四章第四节有理函数的积分
没有女朋友的程序员
高等数学
一、有理函数积分的基本概念什么是有理函数?有理函数是指两个多项式相除的形式:R(x)=P(x)/Q(x)其中P(x)和Q(x)都是多项式。真分式与假分式真分式:分子次数小于分母次数例如:(x+1)/(x²+2x+3)假分式:分子次数大于等于分母次数例如:(x³+2x)/(x²+1)二、有理函数积分的解题步骤第一步:判断分式类型如果是假分式,先用多项式除法化为多项式与真分式的和。第二步:分母因式分解
- 《高等数学》(同济大学·第7版)第四章第二节换元积分法
没有女朋友的程序员
高等数学
一、换元积分法的基本思想换元积分法就像"搭积木",通过变量替换把复杂积分变成简单积分。主要有两种方法:第一类换元法(凑微分法)核心:把被积函数的一部分和dx凑成新的微分口诀:“看结构,凑微分,换变量,求积分”第二类换元法核心:直接设新的变量替换常用于含根式的积分二、第一类换元法详解我们通过具体例子来理解:例1:计算∫2x·cos(x²)dx解:观察发现x²的导数是2x,正好有2xdx设u=x²,那
- 《高等数学 第7版(同济大学 上册).pdf》资源介绍
孟津葵Gilda
《高等数学第7版(同济大学上册).pdf》资源介绍【下载地址】高等数学第7版同济大学上册.pdf资源介绍本资源提供《高等数学第7版(同济大学上册)》电子书,内容涵盖函数与极限、导数与微分、微分方程等核心章节,适合工科和理科学生系统学习。书中包含详细的理论讲解、丰富实例及习题答案,帮助读者深入理解高等数学知识。章节划分清晰,便于查找和学习。资源仅供学习研究使用,请合理利用,尊重知识产权。项目地址:h
- java实现y = x 函数的积分运算(附带源码)
Katie。
Java实战项目数学建模
1.项目背景详细介绍在高等数学中,积分是对函数进行累积求和的过程。对简单函数y=x的不定积分和定积分具有典型意义:不定积分:∫xdx=x²/2+C,其中C为常数项。定积分:∫₀ᵃxdx=a²/2。随着数值计算的广泛应用,如何在计算机程序中准确、高效地实现积分操作成为基础需求。Java作为通用语言,也需要借助数值方法或解析方法来完成函数积分。虽然y=x的积分具有解析解,但项目中往往需要处理任意函数,
- 前端el-table-column使用template的新发现哈哈哈
喻米粒0622
前端vue.jselementui改行学itspringbootvisualstudiospringcloud
记录一次无脑copy代码发现的新知识哈哈哈新知识自己要去查阅相关知识学习,这里我没有描述噢在el-table中的列el-table-column使用了多个button时,每个button都添加了标签,导致只有其中一个button会展示。如:图一问题代码如下:...编辑查看删除审核...图一:上述代码页面效果只会渲染最后一个template(即“审核”按钮),因为前面的template被后面的覆盖了
- Spring AI系列之使用 Mistral AI API 实现函数调用
@@@八爪鱼
人工智能springjava
1.概述利用大型语言模型(LLM),我们可以检索大量有用的信息。我们可以学习关于任何事物的许多新知识,并基于互联网上已有的数据获得答案。我们可以让它们处理输入数据并执行各种操作。但如果我们让模型调用API来准备输出呢?为此,我们可以使用函数调用(FunctionCalling)。函数调用使大型语言模型能够交互并操作数据,执行计算,或获取超出其固有文本能力的信息。本文将探讨函数调用是什么,以及如何利
- 高等数学基础(拉格朗日乘子法)
Psycho_MrZhang
人工智能数学基础数学算法
求解优化问题,拉格朗日乘子法是常用的方法之一问题引入已知目标函数f(x,y)=x2+y2f(x,y)=x^2+y^2f(x,y)=x2+y2,在约束条件xy=3xy=3xy=3下,求f(x,y)f(x,y)f(x,y)的最小值解:这是一个典型的约束优化问题,在之前最简单的办法就是通过约束条件将其中的变量进行变换,带入目标函数求出极点将y=3xy=\frac{3}{x}y=x3,带入f(x,y)=x
- 高等数学基础(牛顿/莱布尼茨公式)
Psycho_MrZhang
人工智能数学基础数学算法
牛顿/莱布尼茨公式主要是为定积分的计算提供了高效的方法,其主要含义在于求积分的函数(f(x)f(x)f(x))连续时候总是存在一条积分面积的函数(F(x)F(x)F(x))与之对应,牛顿莱布尼茨公式吧微分和积分联系了起来,提供了这种高效计算积分面积的方法参考视频理解:https://www.bilibili.com/video/BV1qo4y1G7Da/积分上限的函数及其导数设函数f(x)f(x)
- (八)知识图谱之维护与更新
只有左边一个小酒窝
知识图谱知识图谱人工智能
知识图谱构建完成后,需要持续维护与更新,以确保其时效性、准确性和可用性。以下从数据监控与增量更新、质量评估、人工干预与反馈机制三个方面,结合实际场景详细分析:一、数据监控与增量更新知识图谱的数据会随时间不断变化(如新增电影、演员信息更新),数据监控与增量更新是确保图谱时效性的核心环节,其目标是实时或定时捕获数据源变化,仅更新新增或修改的数据,避免重复处理历史信息,同时记录更新版本以便回溯。1.实时
- 考研数一公式笔记
代码小白 ac
人工智能
考研数学(一)核心结论与易错点详细笔记第一部分:高等数学一、函数、极限、连续(一)重要结论与公式等价无穷小替换(仅限乘除运算,极限过程为x→0或某特定值导致因子→0):sinx~xtanx~xarcsinx~xarctanx~x1-cosx~(1/2)x²e^x-1~xln(1+x)~x(1+x)^α-1~αxa^x-1~xlna(其中a>0,a≠1)重要极限:lim(sinx/x)=1(当x→0
- Spring Boot 3新特性
江湖中的阿龙
springboot后端java
引言在软件开发的浪潮中,技术的迭代更新犹如奔腾不息的江河,推动着开发者不断探索和前进。SpringBoot3的发布,无疑为Java开发领域带来了一场技术革新。它集成了众多前沿特性,从底层框架到上层应用,从开发效率到运行性能,都进行了全方位的升级和优化。本文将深入剖析SpringBoot3的各项更新知识点,带你领略其强大魅力。一、底层框架升级1.1SpringFramework6.0的蜕变Sprin
- java短路运算符和逻辑运算符的区别
3213213333332132
java基础
/*
* 逻辑运算符——不论是什么条件都要执行左右两边代码
* 短路运算符——我认为在底层就是利用物理电路的“并联”和“串联”实现的
* 原理很简单,并联电路代表短路或(||),串联电路代表短路与(&&)。
*
* 并联电路两个开关只要有一个开关闭合,电路就会通。
* 类似于短路或(||),只要有其中一个为true(开关闭合)是
- Java异常那些不得不说的事
白糖_
javaexception
一、在finally块中做数据回收操作
比如数据库连接都是很宝贵的,所以最好在finally中关闭连接。
JDBCAgent jdbc = new JDBCAgent();
try{
jdbc.excute("select * from ctp_log");
}catch(SQLException e){
...
}finally{
jdbc.close();
- utf-8与utf-8(无BOM)的区别
dcj3sjt126com
PHP
BOM——Byte Order Mark,就是字节序标记 在UCS 编码中有一个叫做"ZERO WIDTH NO-BREAK SPACE"的字符,它的编码是FEFF。而FFFE在UCS中是不存在的字符,所以不应该出现在实际传输中。UCS规范建议我们在传输字节流前,先传输 字符"ZERO WIDTH NO-BREAK SPACE"。这样如
- JAVA Annotation之定义篇
周凡杨
java注解annotation入门注释
Annotation: 译为注释或注解
An annotation, in the Java computer programming language, is a form of syntactic metadata that can be added to Java source code. Classes, methods, variables, pa
- tomcat的多域名、虚拟主机配置
g21121
tomcat
众所周知apache可以配置多域名和虚拟主机,而且配置起来比较简单,但是项目用到的是tomcat,配来配去总是不成功。查了些资料才总算可以,下面就跟大家分享下经验。
很多朋友搜索的内容基本是告诉我们这么配置:
在Engine标签下增面积Host标签,如下:
<Host name="www.site1.com" appBase="webapps"
- Linux SSH 错误解析(Capistrano 的cap 访问错误 Permission )
510888780
linuxcapistrano
1.ssh -v
[email protected] 出现
Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password).
错误
运行状况如下:
OpenSSH_5.3p1, OpenSSL 1.0.1e-fips 11 Feb 2013
debug1: Reading configuratio
- log4j的用法
Harry642
javalog4j
一、前言: log4j 是一个开放源码项目,是广泛使用的以Java编写的日志记录包。由于log4j出色的表现, 当时在log4j完成时,log4j开发组织曾建议sun在jdk1.4中用log4j取代jdk1.4 的日志工具类,但当时jdk1.4已接近完成,所以sun拒绝使用log4j,当在java开发中
- mysql、sqlserver、oracle分页,java分页统一接口实现
aijuans
oraclejave
定义:pageStart 起始页,pageEnd 终止页,pageSize页面容量
oracle分页:
select * from ( select mytable.*,rownum num from (实际传的SQL) where rownum<=pageEnd) where num>=pageStart
sqlServer分页:
 
- Hessian 简单例子
antlove
javaWebservicehessian
hello.hessian.MyCar.java
package hessian.pojo;
import java.io.Serializable;
public class MyCar implements Serializable {
private static final long serialVersionUID = 473690540190845543
- 数据库对象的同义词和序列
百合不是茶
sql序列同义词ORACLE权限
回顾简单的数据库权限等命令;
解锁用户和锁定用户
alter user scott account lock/unlock;
//system下查看系统中的用户
select * dba_users;
//创建用户名和密码
create user wj identified by wj;
identified by
//授予连接权和建表权
grant connect to
- 使用Powermock和mockito测试静态方法
bijian1013
持续集成单元测试mockitoPowermock
实例:
package com.bijian.study;
import static org.junit.Assert.assertEquals;
import java.io.IOException;
import org.junit.Before;
import org.junit.Test;
import or
- 精通Oracle10编程SQL(6)访问ORACLE
bijian1013
oracle数据库plsql
/*
*访问ORACLE
*/
--检索单行数据
--使用标量变量接收数据
DECLARE
v_ename emp.ename%TYPE;
v_sal emp.sal%TYPE;
BEGIN
select ename,sal into v_ename,v_sal
from emp where empno=&no;
dbms_output.pu
- 【Nginx四】Nginx作为HTTP负载均衡服务器
bit1129
nginx
Nginx的另一个常用的功能是作为负载均衡服务器。一个典型的web应用系统,通过负载均衡服务器,可以使得应用有多台后端服务器来响应客户端的请求。一个应用配置多台后端服务器,可以带来很多好处:
负载均衡的好处
增加可用资源
增加吞吐量
加快响应速度,降低延时
出错的重试验机制
Nginx主要支持三种均衡算法:
round-robin
l
- jquery-validation备忘
白糖_
jquerycssF#Firebug
留点学习jquery validation总结的代码:
function checkForm(){
validator = $("#commentForm").validate({// #formId为需要进行验证的表单ID
errorElement :"span",// 使用"div"标签标记错误, 默认:&
- solr限制admin界面访问(端口限制和http授权限制)
ronin47
限定Ip访问
solr的管理界面可以帮助我们做很多事情,但是把solr程序放到公网之后就要限制对admin的访问了。
可以通过tomcat的http基本授权来做限制,也可以通过iptables防火墙来限制。
我们先看如何通过tomcat配置http授权限制。
第一步: 在tomcat的conf/tomcat-users.xml文件中添加管理用户,比如:
<userusername="ad
- 多线程-用JAVA写一个多线程程序,写四个线程,其中二个对一个变量加1,另外二个对一个变量减1
bylijinnan
java多线程
public class IncDecThread {
private int j=10;
/*
* 题目:用JAVA写一个多线程程序,写四个线程,其中二个对一个变量加1,另外二个对一个变量减1
* 两个问题:
* 1、线程同步--synchronized
* 2、线程之间如何共享同一个j变量--内部类
*/
public static
- 买房历程
cfyme
2015-06-21: 万科未来城,看房子
2015-06-26: 办理贷款手续,贷款73万,贷款利率5.65=5.3675
2015-06-27: 房子首付,签完合同
2015-06-28,央行宣布降息 0.25,就2天的时间差啊,没赶上。
首付,老婆找他的小姐妹接了5万,另外几个朋友借了1-
- [军事与科技]制造大型太空战舰的前奏
comsci
制造
天气热了........空调和电扇要准备好..........
最近,世界形势日趋复杂化,战争的阴影开始覆盖全世界..........
所以,我们不得不关
- dateformat
dai_lm
DateFormat
"Symbol Meaning Presentation Ex."
"------ ------- ------------ ----"
"G era designator (Text) AD"
"y year
- Hadoop如何实现关联计算
datamachine
mapreducehadoop关联计算
选择Hadoop,低成本和高扩展性是主要原因,但但它的开发效率实在无法让人满意。
以关联计算为例。
假设:HDFS上有2个文件,分别是客户信息和订单信息,customerID是它们之间的关联字段。如何进行关联计算,以便将客户名称添加到订单列表中?
&nbs
- 用户模型中修改用户信息时,密码是如何处理的
dcj3sjt126com
yii
当我添加或修改用户记录的时候对于处理确认密码我遇到了一些麻烦,所有我想分享一下我是怎么处理的。
场景是使用的基本的那些(系统自带),你需要有一个数据表(user)并且表中有一个密码字段(password),它使用 sha1、md5或其他加密方式加密用户密码。
面是它的工作流程: 当创建用户的时候密码需要加密并且保存,但当修改用户记录时如果使用同样的场景我们最终就会把用户加密过的密码再次加密,这
- 中文 iOS/Mac 开发博客列表
dcj3sjt126com
Blog
本博客列表会不断更新维护,如果有推荐的博客,请到此处提交博客信息。
本博客列表涉及的文章内容支持 定制化Google搜索,特别感谢 JeOam 提供并帮助更新。
本博客列表也提供同步更新的OPML文件(下载OPML文件),可供导入到例如feedly等第三方定阅工具中,特别感谢 lcepy 提供自动转换脚本。这里有导入教程。
- js去除空格,去除左右两端的空格
蕃薯耀
去除左右两端的空格js去掉所有空格js去除空格
js去除空格,去除左右两端的空格
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>&g
- SpringMVC4零配置--web.xml
hanqunfeng
springmvc4
servlet3.0+规范后,允许servlet,filter,listener不必声明在web.xml中,而是以硬编码的方式存在,实现容器的零配置。
ServletContainerInitializer:启动容器时负责加载相关配置
package javax.servlet;
import java.util.Set;
public interface ServletContainer
- 《开源框架那些事儿21》:巧借力与借巧力
j2eetop
框架UI
同样做前端UI,为什么有人花了一点力气,就可以做好?而有的人费尽全力,仍然错误百出?我们可以先看看几个故事。
故事1:巧借力,乌鸦也可以吃核桃
有一个盛产核桃的村子,每年秋末冬初,成群的乌鸦总会来到这里,到果园里捡拾那些被果农们遗落的核桃。
核桃仁虽然美味,但是外壳那么坚硬,乌鸦怎么才能吃到呢?原来乌鸦先把核桃叼起,然后飞到高高的树枝上,再将核桃摔下去,核桃落到坚硬的地面上,被撞破了,于是,
- JQuery EasyUI 验证扩展
可怜的猫
jqueryeasyui验证
最近项目中用到了前端框架-- EasyUI,在做校验的时候会涉及到很多需要自定义的内容,现把常用的验证方式总结出来,留待后用。
以下内容只需要在公用js中添加即可。
使用类似于如下:
<input class="easyui-textbox" name="mobile" id="mobile&
- 架构师之httpurlconnection----------读取和发送(流读取效率通用类)
nannan408
1.前言.
如题.
2.代码.
/*
* Copyright (c) 2015, S.F. Express Inc. All rights reserved.
*/
package com.test.test.test.send;
import java.io.IOException;
import java.io.InputStream
- Jquery性能优化
r361251
JavaScriptjquery
一、注意定义jQuery变量的时候添加var关键字
这个不仅仅是jQuery,所有javascript开发过程中,都需要注意,请一定不要定义成如下:
$loading = $('#loading'); //这个是全局定义,不知道哪里位置倒霉引用了相同的变量名,就会郁闷至死的
二、请使用一个var来定义变量
如果你使用多个变量的话,请如下方式定义:
. 代码如下:
var page
- 在eclipse项目中使用maven管理依赖
tjj006
eclipsemaven
概览:
如何导入maven项目至eclipse中
建立自有Maven Java类库服务器
建立符合maven代码库标准的自定义类库
Maven在管理Java类库方面有巨大的优势,像白衣所说就是非常“环保”。
我们平时用IDE开发都是把所需要的类库一股脑的全丢到项目目录下,然后全部添加到ide的构建路径中,如果用了SVN/CVS,这样会很容易就 把
- 中国天气网省市级联页面
x125858805
级联
1、页面及级联js
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
&l