- flutter知识点
ZhDan91
flutter
#时隔4年了#4年前用flutter开发海外项目和医疗项目。绘制界面的语法与html还是较类似的。把这些封印的记忆和技术回顾一下,最开始是开发Android出身的,所以开发起flutter来依旧是用的androidstudio开发工具。整理下用到的知识点:整理来源:flutter面试题——基础篇(1)-CSDN博客1、Dart是单线程的。在单线程中以消息循环来运行的。其中敖汉两个任务队列。一个是微
- 数据分析常用指标名词解释及计算公式
走过冬季
学习笔记数据分析大数据
数据分析中有大量常用指标,它们帮助我们量化业务表现、用户行为、产品健康度等。下面是一些核心指标的名词解释及计算方式,按常见类别分类:一、流量与用户规模指标页面浏览量名词解释:用户访问网站或应用时,每次加载或刷新一个页面就算一次PV。它衡量的是页面被打开的总次数。计算方式:PV=∑(所有页面被加载的次数)(通常由埋点或日志直接统计)独立访客数名词解释:在特定时间范围内(如一天、一周、一月),访问网站
- 解码服务竞争力,医疗美容机构如何在红海中突围?
湖南群狼调研
神秘顾客湖南群狼市场调查暗访长沙群狼调用
医疗与美容行业的竞争早已进入“贴身肉搏”阶段,(武汉问卷调查公司)(美容行业神秘顾客)(长沙市场调研公司)而决定胜负的核心,藏在患者挂完号后的等待里,藏在医生解释病情的语气里,藏在检查报告递出时的说明里——这些看不见的服务细节,正是拉开差距的关键。湖南群狼市场调查,17年专注医疗与美容机构暗访服务,以第三方的客观视角,为机构解码服务竞争力的密码,助您在激烈竞争中撕开市场缺口。一:17年行业洞察,暗
- 目标检测(object detection)
加油吧zkf
目标检测目标检测人工智能计算机视觉
目标检测作为计算机视觉的核心技术,在自动驾驶、安防监控、医疗影像等领域发挥着不可替代的作用。本文将系统讲解目标检测的概念、原理、主流模型、常见数据集及应用场景,帮助读者构建对这一技术的完整认知。一、目标检测的核心概念目标检测(ObjectDetection)是指在图像或视频中自动定位并识别出所有感兴趣的目标的技术。它需要解决两个核心问题:分类(Classification):确定图像中每个目标的类
- 不同行业的 AI 数据安全与合规实践:7 大核心要点全解析
观熵
人工智能DeepSeek私有化部署
不同行业的AI数据安全与合规实践:7大核心要点全解析关键词AI数据安全、行业合规、私有化部署、数据分类分级、国产大模型、隐私保护、DeepSeek部署摘要随着国产大模型在金融、医疗、政务、教育等关键领域的深入部署,AI系统对数据安全与行业合规提出了更高要求。本文结合DeepSeek私有化部署实战,系统梳理当前各行业主流的数据安全合规标准与落地策略,从数据分类分级、访问控制、审计追踪到敏感信息识别与
- 微算法科技的前沿探索:量子机器学习算法在视觉任务中的革新应用
MicroTech2025
量子计算算法
在信息技术飞速发展的今天,计算机视觉作为人工智能领域的重要分支,正逐步渗透到我们生活的方方面面。从自动驾驶到人脸识别,从医疗影像分析到安防监控,计算机视觉技术展现了巨大的应用潜力。然而,随着视觉任务复杂度的不断提升,传统机器学习算法在处理大规模、高维度数据时遇到了计算瓶颈。在此背景下,量子计算作为一种颠覆性的计算模式,以其独特的并行处理能力和指数级增长的计算空间,为解决这一难题提供了新的思路。微算
- 网络安全行业核心人才需求与职业发展路径
Gappsong874
安全网络安全程序人生职场和发展
在数字化浪潮席卷全球的今天,数据已成为驱动经济、重塑社会的核心资产。从智慧城市到工业互联网,从移动支付到远程医疗,数字技术深度融入人类生活的每个角落。然而,技术赋能的另一面是风险的指数级放大——网络攻击手段日益复杂,数据泄露事件频发,关键基础设施面临瘫痪威胁,甚至国家安全与公民隐私也暴露在未知风险之中。在此背景下,网络安全早已超越技术范畴,成为关乎国家战略、企业存续与个人权益的“数字生命线”。无论
- 使用HarmonyOS 5和CodeGenie辅助工具开发鸿蒙运动健康类应用的项目总结
哼唧唧_
CodeGenie运动健康HarmonyOS5harmonyos华为
一、项目背景与目标随着鸿蒙生态在穿戴设备、智能家居领域的快速扩展,我团队基于HarmonyOS5操作系统,开发了一款面向运动健康场景的智能应用——“Harmony健康伴侣”。项目采用华为官方推出的智能编程助手CodeGenie进行辅助开发,旨在验证CodeGenie在提升鸿蒙应用开发效率与质量方面的实际效果。二、核心功能实现该应用深度融合HarmonyOS分布式能力,支持跨设备无缝协同,主要功能包
- 数据分析框架和方法
XiaoQiong.Zhang
人工智能
一、核心分析框架(TheBigPictureFrameworks)描述性分析(WhatHappened?)目的:了解过去发生了什么,描述现状,监控业务健康。核心工作:汇总、聚合、计算基础指标(KPI),生成报表和仪表盘。常用方法/指标:计数/求和/平均值/中位数:DAU/MAU,总销售额,客单价等。比率:转化率,点击率,流失率,毛利率等。分布:用户活跃度分布、订单金额分布、地域分布等。常用于理解群
- 服务实现99.99%高可用的核心措施
在分布式系统中,高可用性(HA)是衡量服务可靠性的核心指标。99.99%的可用性意味着系统每年的停机时间不超过约52.6分钟,这对金融交易、电信服务等关键业务至关重要。一、冗余设计与故障转移原理:通过冗余部署消除单点故障,确保部分节点故障时服务仍可用。故障转移机制自动将流量切换至健康节点,缩短服务中断时间。Java服务实现:集群部署:使用SpringCloudAlibaba或Dubbo构建微服务集
- AI在垂直领域的深度应用:医疗、金融与自动驾驶的革新之路
AI在垂直领域的深度应用:医疗、金融与自动驾驶的革新之路一、医疗领域:AI驱动的精准诊疗与效率提升1.医学影像诊断AI算法通过深度学习技术,已实现对X光、CT、MRI等影像的快速分析,辅助医生检测癌症、骨折等疾病。例如,GoogleDeepMind的AI系统在乳腺癌筛查中,误检率比人类专家低9.4%;中国的推想医疗AI系统可在20秒内完成肺部CT扫描分析,为急诊救治争取黄金时间。2.药物研发传统药
- 医疗金融预测与语音识别中的模型优化及可解释性技术突破
智能计算研究中心
其他
内容概要随着人工智能技术的纵深发展,模型优化与可解释性技术正在重塑医疗诊断、金融预测及语音识别领域的应用范式。在医疗领域,基于自适应学习的动态参数调整机制,结合迁移学习的跨场景知识复用,显著提升了疾病筛查模型的泛化能力;而金融预测场景中,联邦学习框架通过分布式数据协作,在保障隐私安全的前提下,实现了风险预测模型的多维度优化。语音识别领域则依托边缘计算架构,将模型压缩技术与实时推理引擎结合,有效解决
- 【数据分析】多数据集网络分析:探索健康与退休研究中的变量关系
生信学习者1
数据分析(2025版)数据分析r语言数据挖掘数据可视化
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍加载R包数据下载导入数据数据预处理函数网络分析画图保存图片总结系统信息介绍在医学和社会科学研究中,理解多个变量之间的复杂关系对于揭示潜在的病理生理机制和社会行为模式至关重要。本文介绍了一种基于R语言的网络分析方法,用于探索HRS(健康与退休研究)及其类似研究(CHARLS、ELSA、MHAS、SHARE)中的变
- 普通人生存指南
程序员
普通人生存指南基于对阶层博弈本质和底层生存策略的分析,结合当前社会运行规则,以下是针对底层百姓的生存指南:一、政策收割的本质:阶层利益分配的游戏底层收割闭环债务绑定:房贷、消费贷、信用卡等债务工具将普通人锁定在劳动还贷循环中,透支未来30年劳动力;刚需消费:教育(鸡娃)、医疗、房产被设计为必选消费,掏空家庭储蓄;制度性转移支付:养老金缺口、地方债最终通过通胀/税收转嫁到底层。中产收割陷阱理财暴雷(
- Spring AI 项目实战(十五):DeepSeek驱动的智能问诊系统实战-从0到1构建AI医疗问诊平台(附完整源码)
程序员岳彬
SpringAI人工智能springjavaai后端
智能问诊系列文章序号文章名称1SpringAI项目实战(一):SpringAI核心模块入门2SpringAI项目实战(二):SpringBoot+AI+DeepSeek深度实战(附完整源码)3
- 小型化与低功耗工业数据采集卡的在哪些行业有强劲需求?
番茄老夫子
数据采集卡
小型化与低功耗工业数据采集卡在汽车、医疗、能源等多个行业有着强劲需求,以下是具体介绍:汽车行业:在汽车电子系统中,如电池管理系统、电机控制和自动驾驶系统等,需要采集大量传感器数据。小型化低功耗的数据采集卡可轻松嵌入汽车内部紧凑空间,且能在车辆长时间运行中保持低能耗,例如用于实时监控车载网络信号,优化ECU性能,同时满足汽车对零部件小型化、轻量化以及节能的要求。医疗行业:医疗设备如呼吸机、心脏监测仪
- 【HTML网页】智能健康监测——全方位健康管理专家(包含网页源代码)
智能健康监测分析系统智能健康监测分析系统是一种基于物联网、大数据、人工智能等技术的综合性健康管理解决方案。它具有以下六大核心功能:实时监测系统通过智能传感器和可穿戴设备,实时采集用户的生理数据,例如心率、血压、血氧饱和度、血糖水平和睡眠质量等,确保用户随时掌握自己的身体状况。健康数据分析利用人工智能和大数据分析技术,系统对采集到的数据进行处理和分析,提取有价值的健康信息,如心率变异性、呼吸频率等,
- 新型BERT勒索软件肆虐:多线程攻击同时针对Windows、Linux及ESXi系统
趋势科技安全分析师发现,一个代号为BERT(内部追踪名WaterPombero)的新型勒索软件组织正在亚洲、欧洲和美国展开多线程攻击。该组织主要针对医疗保健、科技和会展服务行业,其活动范围显示其正成为勒索软件生态中的新兴威胁力量。攻击技术分析在Windows系统中,BERT通过PowerShell加载器(start.ps1)实施攻击,该脚本会执行以下操作:禁用WindowsDefender防火墙和
- 医疗票据查验原理-财政票管理-发票查验接口流程解析
wt_cs
发票识别大数据人工智能
在医疗行业数字化转型的背景下,医疗发票的查验与识别已成为医疗机构、企事业单位及金融机构财务管理的重要环节。医疗发票作为医疗服务消费的重要凭证,其真实性与准确性直接关系到医保报销、财务审计及税务管理等多个环节。随着医疗票据电子化进程的加速,传统人工查验方式已难以满足海量票据处理的需求,医疗票据查验接口与医疗票据识别接口应用而生。传统人工查验面临以下几大挑战:1、票据量大、人工处理效率低:通过人工核验
- 居家医养平台的数据加密与审计要点
辽宁龙慧网络科技
团队开发居家医养服务平台智慧养老平台APP开发数据安全
居家医养平台涉及大量敏感健康数据(如生理指标、电子病历、用户行为记录),其数据加密与审计需满足医疗合规性(如HIPAA、GDPR、中国《个人信息保护法》)和技术可靠性的双重要求。以下是具体的技术实现框架与合规策略:一、数据加密核心要求1.传输层加密技术方案:TLS1.3:强制所有API、Web及移动端通信使用TLS1.3协议,禁用弱加密套件(如RC4、SHA-1)。国密算法支持:针对中国市场,集成
- 【字节跳动】数据挖掘面试题0010:解释全国人均收入下降,各省份人均收入增加的现象,属于辛普森悖论(开放性问题)
言析数智
数据挖掘常见面试题辛普森悖论局部与整体分析差异归因数据分析面试题
文章大纲一、辛普森悖论的核心定义二、现象成因:加权平均中的“权重偏移”三、数学逻辑与案例说明1.数学表达式2.具体案例四、辛普森悖论的本质:忽略“混杂因素”的影响五、生活中常见的辛普森悖论案例及应对策略1.医疗疗法效果评估2.大学录取率的性别偏差3.篮球运动员投篮效率4.公司员工绩效与部门规模如何利用辛普森悖论?(数据分析中的价值)六、总结全国人均收入下降而各省份人均收入增加的现象,确实属于辛普森
- 数据挖掘:从理论到实践的深度探索
代码老y
数据挖掘人工智能
在当今数字化时代,数据已经成为企业决策的重要依据。数据挖掘作为一门从大量数据中提取有价值信息的技术,已经广泛应用于各个领域,如金融、医疗、零售、互联网等。本文将深入探讨数据挖掘的基本概念、主要技术和实际应用案例,帮助读者更好地理解数据挖掘的价值和应用。一、数据挖掘的基本概念(一)数据挖掘的定义数据挖掘(DataMining)是从大量数据中提取有用信息的过程。它结合了统计学、机器学习、数据库技术和人
- Elasticsearch入门(二):document数据格式 、简单的es restful api
m0_50134014
Elasticsearchelasticsearchjava
目录一、document数据格式1.1面向文档的搜索分析引擎1.1.1对象数据存储到数据库中1.1.2对象数据存储到ES中二、电商网站商品管理案例背景介绍2.1简单的集群管理2.1.1快速检查集群的健康状况:`GET/_cat/health?v`2.1.2快速查看集群中有哪些索引:`GET/_cat/indices?v`2.1.3创建索引:`PUT/test_index?pretty`2.1.4删
- 机器学习手写字体识别系统:技术演进与应用实践
万能小贤哥
机器学习人工智能
引言:手写字体识别的技术定位与价值在信息处理领域,人工录入手写文本的低效性与机器识别的高效性形成鲜明对比。例如,医疗处方的人工处理需约5分钟/张,而采用手写字体识别技术可将时间缩短至10秒/张,显著提升处理效率。作为计算机视觉与人工智能的重要分支,手写字体识别技术通过将手写文本转换为可编辑电子文本,不仅大幅减少人工输入时间和错误,降低人工处理成本,还能在大量数据处理时保持高于人工录入的准确性,是人
- MCP协议采用客户端-服务器架构的深层逻辑与架构对比分析
一、架构选择的核心动因1.功能解耦与安全边界的强制性要求MCP采用客户端-服务器(C/S)架构的核心动因源于AI系统与真实世界交互的特殊性:权限分层控制:主机(Host)作为协调层,严格划分客户端(Client)与服务端(Server)的操作权限。例如医疗场景中,诊断模型(Client)仅能通过医院授权的主机访问脱敏病历服务器,无法直接接触原始数据。沙箱隔离需求:每个MCP服务器运行在独立容器中(
- 微服务世界的“导航仪”!Spring Cloud五大注册中心选型指南,从此不再迷路!
码农技术栈
微服务微服务springcloud架构springbootjava后端
引言:为什么微服务需要“导航仪”?想象一下,你走进一座巨大的迷宫(微服务集群),里面有成百上千个房间(服务实例),每个房间都在动态变化位置(服务扩缩容)。注册中心就像迷宫里的导航仪,实时记录所有房间的位置,告诉你怎么最快找到目标。没有它?你可能会永远迷失在“服务调用”的迷宫里!注册中心的核心作用服务注册:服务启动时,主动上报自己的地址和状态。服务发现:调用方通过注册中心查询目标服务的位置。健康监测
- 从实践到自动化:现代运维管理的转型与挑战
运维
从实践到自动化:现代运维管理的转型与挑战在信息化快速发展的今天,企业IT系统的稳定性、可用性和安全性已成为衡量公司竞争力的重要因素之一。运维(IT运维)管理作为确保企业IT系统健康、稳定运行的关键职能,一直是企业技术团队关注的重点。然而,随着业务的复杂化、用户需求的变化以及技术的不断创新,传统的运维方式已逐渐无法满足企业对于高效、高可用、高安全的需求。如何提升运维效率、减少人为错误、提高运维系统的
- 模型融合与人机协同:构建人机共生的智能未来
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍在科技日新月异的今天,人工智能(AI)已经成为了我们生活中不可或缺的一部分。从智能手机,到自动驾驶汽车,再到医疗诊断,AI的应用已经渗透到了我们生活的方方面面。然而,尽管AI的发展已经取得了显著的成就,但是我们仍然面临着一个重大的挑战:如何让AI系统更好地理解和适应人类的需求,以实现人机共生的智能未来。为了解决这个问题,越来越多的研究者开始探索模型融合和人机协同的方法。2.核心概念与联
- 心理健康语音分析AI模型:开启心理评估新时代
AI大模型应用实战
人工智能语音识别ai
心理健康语音分析AI模型:开启心理评估新时代关键词:心理健康评估、语音信号处理、情感计算、AI模型、多模态融合摘要:传统心理评估依赖量表问卷和人工观察,存在主观性强、效率低、难以实时监测等局限。本文将带您走进“心理健康语音分析AI模型”的世界,从基础概念到核心技术,从算法原理到实战案例,揭秘AI如何通过“听声音”读懂心理状态,开启心理评估的智能化新时代。背景介绍目的和范围心理健康问题已成为全球公共
- 跨机构医疗影像解析的协议协同架构——基于MCP协议的“巴比伦塔困境“突破
百态老人
架构
在医疗影像领域,不同医疗机构间因系统异构性形成的"巴比伦塔困境",本质上是协议标准碎片化与数据语义隔阂的叠加效应。通过融合MCP协议、DICOM标准扩展与新型云架构,协和医院PACS系统与301医院AI模型间的直接解析得以实现。这一技术突破包含以下核心创新层级:一、协议转换层的架构创新1.多协议语义网关基于MCP协议构建的智能协议转换层,实现不同DICOM实现版本的动态适配:
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =