- uniapp 返回上一页 刷新数据
林发和
uni-appjavascript前端
2种情况,第一种是按钮等事件手动返回上一页,采用事件通知:子页面:uni.$emit('refreshIfNeeded',true)uni.navigateBack({delta:1,})上一个页面onShow(()=>{console.log('onShow')//获取传值uni.$on('refreshIfNeeded',function(dat){console.log('监听到事件来自re
- 没想到枚举Enum类还能实现接口!教你玩转Java枚举Enum
林发和
Java干货分享java
枚举是什么?枚举是一种特殊的数据类型,预先定义一组常量(对象),并且必须为其赋值。Java枚举类型的基本想法非常简单:这些类通过共有的静态final域为每个枚举常量导出一个实例。枚举类型没有可以访问的构造器,所以它是真的final类。客户端不能创建枚举类型的实例,也不能对它进行扩展,因此不存实例,而只存在声明过程的枚举常量。也就是枚举类型是实例受控的。它们是单例(Singleton)的范型化,本质
- SpringBoot 整合security 实现自定义Token和clientId登录及退出(二)
.猫的树
springbootspringjava
接上一篇6.认证相关处理创建登录成功DemoAuthenticationSuccessHandler.java/***用户身份验证通过处理*/@Component@SuppressWarnings("all")publicclassDemoAuthenticationSuccessHandlerimplementsAuthenticationSuccessHandler{@Autowiredpri
- 如何在苹果内购开发中获取App Store Connect API密钥-共享密钥理解内购安全-优雅草卓伊凡
卓伊凡
APP上架服务器运维
如何在苹果内购开发中获取AppStoreConnectAPI密钥-共享密钥理解内购安全-优雅草卓伊凡在苹果内购开发中,你可能会涉及到获取不同类型的“密钥”,以满足安全验证和开发的需求。以下介绍常见的获取方式:1.AppStoreConnectAPI密钥(用于服务器端验证内购)用途:如果你计划在服务器端验证用户的内购交易,以确保交易的真实性和防止欺诈,就需要使用AppStoreConnectAPI密
- 解决 Ollama 无法通过本地 IP 访问 11434 端口的问题
CarlowZJ
tcp/ip网络协议网络
根据你的描述,你在尝试将Ollama的localhost地址替换为本地IP地址(如192.168.*.*)时,遇到了网络错误,提示无法连接到服务。但在浏览器中访问http://:11434时,Ollama显示正在运行。以下是可能的原因和解决方案:一、问题分析Ollama默认绑定到127.0.0.1默认情况下,Ollama服务绑定到127.0.0.1(即localhost),这意味着它只能接受来自本
- rocketmq-client 4.3.0 在springboot中的使用
Myueye
JAVAjava
rocketmq-client4.3.0在springboot中的使用1、导入依赖2、配置文件属性3、编写配置类4、使用测试5、结果5.1RocketMQ后台显示5.2前端页面5.3后端后台1、导入依赖org.apache.rocketmqrocketmq-client4.3.02、配置文件属性mq.nameserverAdd=ip地址:9876mq.topic=top1(topic名称)mq.p
- 通过动态内存管理实现在VS2022中实现变长数组
Dust-Chasing
开发语言c语言数据结构算法
目录一、malloc函数和free函数二、calloc函数三、realloc函数不知道大家在使用vs2022编译器时有没有遇见过这样一个问题,当我们用一个变量来作为数组的大小时,编译器会报错,要求我们使用常量,这样一来就会使我们的内存空间被大量浪费,使我们非常的头疼,但是如果当我们学到动态内存管理时,我们就有了解决这个问题的办法。一、malloc函数和free函数C语言提供了一个动态内存开辟的函数
- 数据结构之链表(单链表)
Dust-Chasing
数据结构链表c语言
目录一、链表的概念二、链表的分类三、单链表的实现1.创建新的节点2.打印链表3.链表的头插和尾插尾插:要注意第一次插入时链表为空的情况。头插:4.单链表的头删和尾删尾删:注意链表中只有一个元素的情况。且要保存尾节点的前一个节点。头删:5.单链表的查找一、链表的概念链表是一种物理存储结构上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表实际上就像一列火车一样,每一个
- 使用kubeadm部署高可用IPV4/IPV6集群---V1.32
使用kubeadm部署高可用IPV4/IPV6集群https://github.com/cby-chen/Kubernetes开源不易,帮忙点个star,谢谢了k8s基础系统环境配置配置IP#注意!#若虚拟机是进行克隆的那么网卡的UUID和MachineID会重复#需要重新生成新的UUIDUUID和MachineID#UUID和MachineID重复无法DHCP获取到IPV6地址sshroot@1
- Python基于深度学习的动物图片识别技术的研究与实现
Java老徐
Python毕业设计python深度学习开发语言深度学习的动物图片识别技术Python动物图片识别技术
博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w+、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌文末获取源码联系精彩专栏推荐订阅不然下次找不到哟2022-2024年最全的计算机软件毕业设计选题大全:1000个热门选题推荐✅Java项目精品实战案例《100套》Java微信小程序项目实战《100套》感兴趣的可以先收藏起来,还有大家
- 聊聊langchain4j的HTTP Client
langchain4j
序本文主要研究一下langchain4j的HTTPClientlangchain4j-http-clientlangchain4j提供了langchain4j-http-client模块,它实现了一个HttpClientSPI(服务提供者接口),其他模块通过该接口调用LLM提供商的RESTAPI。这意味着底层HTTP客户端可以被自定义,通过实现HttpClientSPI,还可以集成任何其他HTTP
- C语言三大程序结构 & 单分支语句
要下雨了吗
c语言c++visualstudio
核心概念:程序就像流水线,通过顺序、选择、循环三种结构完成复杂任务一、三大程序结构图解结构类型形象比喻代码示例顺序直行马路→不拐弯printf("A");printf("B");选择岔路口→二选一if...else循环环形跑道→重复绕圈for/while二、选择结构:if语句完全指南1.基础语法(单分支)if(条件表达式){语句1;//条件成立时执行}else{语句2;//条件不成立时执行}2.真
- form 表单内容序列化成一个字符串
sayyy
jqueryjquery
html关键字1:关键字2:关键字3:form表单数据转json对象$('#form1').serialize()ajax调用时提交表单数据$.ajax({url:"http://localhost:8080/xxx",type:"POST",data:$('#form1').serialize(),success:function(data){$('#serverResponse').html(
- stability ai推出的 AI模型2D图像转3D视频
微丽宝
AI工具人工智能3d音视频
StableVirtualCamera是StabilityAl推出的A|模型,能将2D图像转换为具有真实深度和透视感的3D视频。用户可以通过指定相机轨迹和多种动态路径(如螺旋、推拉变焦、平移等)来生成视频。模型支持从1到32张输入图像生成不同宽高比(如1:1、9:16、16:9)的视频,最长可达1000帧。无需复杂的重建或优化,可生成高质量的3D视频,同时保持3D一致性和时间平滑性。StableV
- 【Spark】查询优化中分区(Partitioning)和分桶(Bucketing)是什么关系?什么时候应当分区,什么时候应当分桶?
petrel2015
spark大数据分布式数据库
在学习Spark的过程中,分区和分桶乍一看很像,都能为了计算加速,但是仔细一想,一查还是有些差异的,甚至说差异很大。那么具体有什么差异点,有什么相同点。我做出了如下的整理,供大家参考,欢迎指正。相同点分区(Partitioning)和分桶(Bucketing)在很多方面具有相似性,它们都是用于优化大数据查询性能的技术数据划分的目的:优化查询性能分区和分桶的核心目标是通过将数据分割成更小的逻辑单元来
- 【深度学习与大模型基础】第7章-特征分解与奇异值分解
lynn-66
深度学习与大模型基础算法机器学习人工智能
一、特征分解特征分解(EigenDecomposition)是线性代数中的一种重要方法,广泛应用于计算机行业的多个领域,如机器学习、图像处理和数据分析等。特征分解将一个方阵分解为特征值和特征向量的形式,帮助我们理解矩阵的结构和性质。1.特征分解的定义对于一个n×n的方阵A,如果存在一个非零向量v和一个标量λ,使得:则称λ为矩阵A的特征值,v为对应的特征向量。特征分解将矩阵A分解为:其中:Q是由特征
- 不神话大模型,不做技术乌托邦,用"传统IT+AI积木"实现企业智能转型
人工智能
一、开篇:AI革命的务实辩证法在技术狂热与落地鸿沟并存的AI时代,灵燕智能体开发平台提出"三轮驱动法则":•不颠覆的智慧:MySQL、知识图谱库、MQ等传统中间件构成数字地基•不空想的创新:大模型仅承担"认知苦力",在人类设计的思考链中定向发力•不取巧的工程:通过D2R映射、低代码工具、元数据治理实现可落地的智能装配二、核心价值:智能开发的工业流水线技术要素原子化拆解将复杂需求分解为可执行的"技术
- 【论文阅读】Persistent Homology Captures the Generalization of Neural Networks Without A Validation Set
开心星人
论文阅读论文阅读
将神经网络表征为加权的无环图,直接根据模型的权重矩阵构造PD。计算相邻batch的权重矩阵PD之间的距离。比较同调收敛性与神经网络的验证精度变化趋势摘要机器学习从业者通常通过监控模型的某些指标来估计其泛化误差,并在训练数值收敛之前停止训练,以防止过拟合。通常,这种误差度量或任务相关的指标是通过一个验证集(holdoutset)来计算的。因为这些数据没有直接用于更新模型参数,通常假设模型在验证集上的
- Windows10本地部署Dify+Xinference
橘长长长
AI相关aidifyxinferenceglm4
目录前言一、安装必要项1.安装Docker和AnaConda2.安装Xinference3.通过Xinference部署本地glm4-chat-1m4.验证glm4-chat-1m是否部署完成5.安装Dify三、Dify中配置大模型1.浏览器输入http://localhost:80启动Dify页面2.随便注册账户登录3.配置Xinference四、运行Dify1.设置系统推理模型2.对话窗口验证
- unity3D获取游戏物体的四种方式
qq_35430208
unity3d游戏uinity3d图形渲染3d渲染游戏引擎unity3D获取游戏物体
一、第一种:二、第二种:voidStart(){print(transform.Find("GameObject(1)/GameObject"));print(transform.Find("GameObject(2)"));}三、第三种:比较耗性能,不推荐使用voidStart(){GameObjectmainCameraGo=GameObject.Find("MainCamera");//查找
- 【软考论文】论软件系统架构评估
罗小爬EX
软考(系统架构师)软考系统架构师论文
目录一、题目二、论文2.1摘要2.2正文三、扩展3.1基础知识3.2评估方式综合对比3.3SAAM基于场景的架构分析方法3.4ATAM架构权衡分析方法3.5质量属性一、题目对于软件系统,尤其是大规模的复杂软件系统来说,软件的系统架构对于确保最终系统的质量具有十分重要的意义,不恰当的系统架构将给项目带来高昂的代价和难以避免的灾难。对一个系统架构进行评估,是为了:分析现有架构存在的风险,检验设计中提出
- Linux中的 mutex [二] —— 乐观自旋机制
jianchi88
内核同步Linux稳定性android服务器linuxubuntu
本文基于5.4.86版本内核mutex可视作是spinlock的可睡眠版本,同样是线程无法继续向前执行,但spinlock是"spin",导致该CPU上无法发生线程切换,而mutex是"block"(我们通常翻译成「阻塞」),可以发生线程切换,让所在CPU上的其他线程继续执行。阻塞既可以发生在线程试图获取mutex时,也可以发生在线程持有mutex时。现在的mutex机制,要从这几方面纬度理解:o
- 论文阅读笔记——MAGICDRIVE: STREET VIEW GENERATION WITH DIVERSE 3D GEOMETRY CONTROL
寻丶幽风
论文阅读笔记论文阅读笔记3d人工智能自动驾驶
MagicDrive论文MagicDrive通过对3D数据和文本数据的多模态条件融合和隐式视角转换,实现了高质量、多视角一致的3D场景生成。几何条件编码Cross-attention:针对顺序数据,适合处理文本标记和边界框等可变长度输入。Additiveencoderbranch:对于地图等网络状规则数据,能够有效保留空间结构。对于文本按照模版构建:“Adrivingsceneat{locatio
- 【笔记】扩散模型(五):Classifier-Free Guidance 理论推导与代码实现
LittleNyima
DiffusionModels笔记机器学习深度学习
论文链接:Classifier-FreeDiffusionGuidance上一篇文章我们学习了ClassifierGuidance,这种方法通过引入一个额外的分类器,使用梯度引导的方式成功地实现了条件生成。虽然ClassifierGuidance可以直接复用训练好的diffusionmodels,不过这种方法的问题是很明显的,首先需要额外训练一个分类器,而且这个分类器不仅仅分类一般的图像,还需要分
- 震惊! “深度学习”都在学习什么
扉间798
深度学习学习人工智能
常见的机器学习分类算法俗话说三个臭皮匠胜过诸葛亮这里面集成学习就是将单一的算法弱弱结合算法融合用投票给特征值加权重AdaBoost集成学习算法通过迭代训练一系列弱分类器,给予分类错误样本更高权重,使得后续弱分类器更关注这些样本,然后将这些弱分类器线性组合成强分类器,提高整体分类性能。(一)投票机制投票是一种直观且常用的算法融合策略。在多分类问题中,假设有多个分类器对同一数据进行分类判断。每个分类器
- 【论文阅读】Availability Attacks Create Shortcuts
开心星人
论文阅读论文阅读
还得重复读这一篇论文,有些地方理解不够透彻可用性攻击通过在训练数据中添加难以察觉的扰动,使数据无法被机器学习算法利用,从而防止数据被未经授权地使用。例如,一家私人公司未经用户同意就收集了超过30亿张人脸图像,用于构建商业人脸识别模型。为解决这些担忧,许多数据投毒攻击被提出,以防止数据被未经授权的深度模型学习。它们通过在训练数据中添加难以察觉的扰动,使模型无法从数据中学习太多信息,从而导致模型在未见
- NLP高频面试题(十)——目前常见的几种大模型架构是啥样的
Chaos_Wang_
NLP常见面试题自然语言处理架构人工智能
深入浅出:目前常见的几种大模型架构解析随着Transformer模型的提出与发展,语言大模型迅速崛起,已经成为人工智能领域最为关注的热点之一。本文将为大家详细解析几种目前常见的大模型架构,帮助读者理解其核心差异及适用场景。1.什么是LLM(大语言模型)?LLM通常指参数量巨大、能够捕捉丰富语义信息的Transformer模型,它们通过海量的文本数据训练而成,能够实现高度逼真的文本生成、复杂的语言理
- Linux中mutex机制
C嘎嘎嵌入式开发
Linuxlinux运维服务器
在Linux中,mutex是一种用于多线程编程的同步机制,用于保护共享资源,防止多个线程同时访问或修改这些资源,从而避免竞态条件的发生。mutex是“mutualexclusion”的缩写,意为“互斥”。1.Mutex的基本概念互斥锁:mutex是一种锁机制,用于确保在任何时刻只有一个线程可以访问共享资源。当一个线程持有mutex时,其他试图获取该mutex的线程将被阻塞,直到持有mutex的线程
- 在SPSS的单因素方差分析(One-Way ANOVA)中,F值和t值是两种不同的统计量 f/t
zhangfeng1133
数据分析
在SPSS的单因素方差分析(One-WayANOVA)中,F值和t值是两种不同的统计量,用于不同的分析场景,具体含义如下:###1.**F值**F值是单因素方差分析中的统计量,用于检验多个组之间的均值是否存在显著差异。它是通过比较组间方差与组内方差的比值来计算的,具体公式为:**F值=组间方差/组内方差**-**F值的意义**:-F值越大,说明组间差异相对于组内差异越大,即不同组之间的均值差异越显
- 金鼎量化助手中的板块与成份股如何实时联动以及股票代码与股软联动
wxqq_541182238
金鼎量化助手经验分享笔记其他人工智能
在专栏之前的文章中有介绍板块强度的作用,使用了哪些参考指标等,下面介绍金鼎量化助手板块强度页面中的板块与成份个股的联动以及如何实现个股与股软:如同花顺、通达信之间的联动。通过股票代码直接联动到股软快速查看。一、板块强度与成份股的关联在金鼎量化助手的板块强度页面中分了两列,第一列是板块,第二列是板块对应的成份股,每天打开软件后会实时获取到板块的最新强度排名情况(需保证勾选上实时刷新选项框),板块列表
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f