python:numpy的索引和切片(2)

接一章 python:numpy的索引和切片(1)
python:numpy的索引和切片(1)

  • 1、numpy中数值的修改
In [31]:t[2,3]                            
Out[31]: 11
In [32]:t[2,3] = 22                             # 修改某一个值
In [33]:t[2,3]
Out[33]: 22
In [34]:t < 10                                                
Out[34]: 
array([[ True,  True,  True,  True],
       [ True,  True,  True,  True],
       [ True,  True, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False],
       [False, False, False, False]])
In [36]:t[t < 10] = 0                            # 修改某一部分值     修改t<10的值   
In [37]:t
Out[37]: 
array([[ 0,  0,  0,  0],
       [ 0,  0,  0,  0],
       [ 0,  0, 10, 22],
       [12, 13, 14, 15],
       [16, 17, 18, 19],
       [20, 21, 22, 23],
       [24, 25, 26, 27],
       [28, 29, 30, 31],
       [32, 33, 34, 35],
       [36, 37, 38, 39],
       [40, 41, 42, 43],
       [44, 45, 46, 47],
       [48, 49, 50, 51],
       [52, 53, 54, 55],
       [56, 57, 58, 59],
       [60, 61, 62, 63],
       [64, 65, 66, 67],
       [68, 69, 70, 71],
       [72, 73, 74, 75],
       [76, 77, 78, 79]])
  • 2、numpy的三元运算符 np.where
In [41]:np.where(t<10,0,10)     #numpy的三元运算符 np.where,t<10赋值为0,否则赋值为10

Out[41]: 
array([[ 0,  0,  0,  0],
       [ 0,  0,  0,  0],
       [ 0,  0, 10, 10],
       [10, 10, 10, 10],
       [10, 10, 10, 10],
       [10, 10, 10, 10],
       [10, 10, 10, 10],
       [10, 10, 10, 10],
       [10, 10, 10, 10],
       [10, 10, 10, 10],
       [10, 10, 10, 10],
       [10, 10, 10, 10],
       [10, 10, 10, 10],
       [10, 10, 10, 10],
       [10, 10, 10, 10],
       [10, 10, 10, 10],
       [10, 10, 10, 10],
       [10, 10, 10, 10],
       [10, 10, 10, 10],
       [10, 10, 10, 10]])

3、numpy中的clip(裁剪)操作

In [42]:t = np.arange(120).reshape(20,6)
In [43]:t
Out[43]: 
array([[  0,   1,   2,   3,   4,   5],
       [  6,   7,   8,   9,  10,  11],
       [ 12,  13,  14,  15,  16,  17],
       [ 18,  19,  20,  21,  22,  23],
       [ 24,  25,  26,  27,  28,  29],
       [ 30,  31,  32,  33,  34,  35],
       [ 36,  37,  38,  39,  40,  41],
       [ 42,  43,  44,  45,  46,  47],
       [ 48,  49,  50,  51,  52,  53],
       [ 54,  55,  56,  57,  58,  59],
       [ 60,  61,  62,  63,  64,  65],
       [ 66,  67,  68,  69,  70,  71],
       [ 72,  73,  74,  75,  76,  77],
       [ 78,  79,  80,  81,  82,  83],
       [ 84,  85,  86,  87,  88,  89],
       [ 90,  91,  92,  93,  94,  95],
       [ 96,  97,  98,  99, 100, 101],
       [102, 103, 104, 105, 106, 107],
       [108, 109, 110, 111, 112, 113],
       [114, 115, 116, 117, 118, 119]])

In [45]: # 将某个值赋值为NAN
In [46]:t[19,3] = np.nan          #在赋值给20行4列为nan时候,出错,"不能将floatNAN转换为int,nan为float类型                     
Traceback (most recent call last):

  File "", line 1, in 
    t[19,3] = np.nan

ValueError: cannot convert float NaN to integer
In [47]:t = t.astype(float)                        # 先将t转换为float类型
In [48]:t[19,3] = np.nan                          # 再将20行4列赋值nan 
In [49]:t                                                  # 输出的20行4列就成功赋值为nan了
Out[49]: 
array([[  0.,   1.,   2.,   3.,   4.,   5.],
       [  6.,   7.,   8.,   9.,  10.,  11.],
       [ 12.,  13.,  14.,  15.,  16.,  17.],
       [ 18.,  19.,  20.,  21.,  22.,  23.],
       [ 24.,  25.,  26.,  27.,  28.,  29.],
       [ 30.,  31.,  32.,  33.,  34.,  35.],
       [ 36.,  37.,  38.,  39.,  40.,  41.],
       [ 42.,  43.,  44.,  45.,  46.,  47.],
       [ 48.,  49.,  50.,  51.,  52.,  53.],
       [ 54.,  55.,  56.,  57.,  58.,  59.],
       [ 60.,  61.,  62.,  63.,  64.,  65.],
       [ 66.,  67.,  68.,  69.,  70.,  71.],
       [ 72.,  73.,  74.,  75.,  76.,  77.],
       [ 78.,  79.,  80.,  81.,  82.,  83.],
       [ 84.,  85.,  86.,  87.,  88.,  89.],
       [ 90.,  91.,  92.,  93.,  94.,  95.],
       [ 96.,  97.,  98.,  99., 100., 101.],
       [102., 103., 104., 105., 106., 107.],
       [108., 109., 110., 111., 112., 113.],
       [114., 115., 116.,  nan, 118., 119.]])

你可能感兴趣的:(python:numpy的索引和切片(2))