数学建模系列-评价模型(四)---主成分分析法

主成分分析法可以理解为层次分析法的一种衍生,是为了舍去无用或者效用较少的参数来达到拟合的目的,为了简化计算。

主成分与原始变量之间的关系:
​ (1)主成分保留了原始变量绝大多数信息。

​ (2)主成分的个数大大少于原始变量的数目。

​ (3)各个主成分之间互不相关。

​ (4)每个主成分都是原始变量的线性组合。

这么一看,又有点像是神经网络法的思想。

PCA降维:
​ 假设我们所讨论的实际问题中,有p个指标,我们把这 p个指标看作p个随机变量,记为X1,X2,…,Xp,主 成分分析就是要把这p个指标的问题,转变为讨论p个 指标的线性组合的问题,而这些新的指标F1,F2,…, Fk(k≤p),按照保留主要信息量的原则充分反映原指标 的信息,并且相互独立。

操作可以直接在excel里面用函来进行降维。

你可能感兴趣的:(数学建模系列+算法系列,机器学习,线性代数,概率论)