生产者消费者模型 C++ 版

基础生产者消费者模型

网上一般教程是使用std::queue,定义消费者 Consumer ,定义Producter类,在main函数里面加锁保证线程安全。
本片文章,实现一个线程安全的队列 threadsafe_queue,只在队列内部加锁。如此可适配,多生产者多消费者的场景

线程安全的队列 threadsafe_queue

#pragma once
#include
#include 
#include
//最大产品数量
#define MAX_SIZE 20
#include 
template<typename T>
class threadsafe_queue
{
private:
    mutable std::mutex mut;
    std::queue<T> data_queue;
    std::condition_variable data_cond;
public:
    threadsafe_queue()
    {}
    
    void wait_and_pop(T& value)  // 2
    {
        std::unique_lock<std::mutex> lk(mut);
        data_cond.wait(lk, [this]{return !data_queue.empty(); });
        value = std::move(data_queue.front());
        data_queue.pop();
        std::cout << "Consumer pop : " << value << std::endl;
        data_cond.notify_all();
    }
    std::shared_ptr<T> wait_and_pop()  // 3
    {
        std::unique_lock<std::mutex> lk(mut);
        data_cond.wait(lk, [this]{return !data_queue.empty(); });  // 4
        std::shared_ptr<T> res(
            std::make_shared<T>(std::move(data_queue.front())));
        data_queue.pop();
        data_cond.notify_all();
        return res;
    }
    bool try_pop(T& value)
    {
        std::lock_guard<std::mutex> lk(mut);
        if (data_queue.empty())
            return false;
        value = std::move(data_queue.front());
        data_queue.pop();
        data_cond.notify_all();
        return true;
    }
    std::shared_ptr<T> try_pop()
    {
        std::lock_guard<std::mutex> lk(mut);
        if (data_queue.empty())
            return std::shared_ptr<T>();  // 5
        std::shared_ptr<T> res(
            std::make_shared<T>(std::move(data_queue.front())));
        data_queue.pop();
        data_cond.notify_all();
        return res;
    }
    void push(T new_value)
    {
        std::unique_lock<std::mutex> lk(mut);
        data_cond.wait(lk, [this] {return data_queue.size() < MAX_SIZE; });
        std::cout << "Producter push : " << new_value << std::endl;
        data_queue.push(std::move(new_value));

        data_cond.notify_all();  // 1
    }
    bool empty() const
    {
        std::lock_guard<std::mutex> lk(mut);
        return data_queue.empty();
    }
};


消费者

Consumer 头文件

#pragma once
#include"threadsafe_queue.h"
/*
基础版 消费者生产者模型
此文件为 消费者
*/

class Consumer
{
public:
	Consumer(threadsafe_queue<int>& queue);
	~Consumer();
	void start();

private:
	threadsafe_queue<int>& m_pQueue;
};

cpp文件

#include "Consumer.h"
#include 
#include
Consumer::Consumer(threadsafe_queue<int> &queue)
	: m_pQueue(queue)
{

}

Consumer::~Consumer()
{
}


void Consumer::start()
{
	while (true)
	{
		int value;
		m_pQueue.wait_and_pop(value);
		Sleep(10);
	}
}
 

生产者

#pragma once
#include"threadsafe_queue.h"
class Producter
{
public:
	Producter(threadsafe_queue<int>& queue,int i);
	~Producter();
	void start();

private:
	threadsafe_queue<int>& m_pQueue;
	int index;
};
#include "Producter.h"
#include
#include 
#include
Producter::Producter(threadsafe_queue<int>& queue, int i)
	: m_pQueue(queue),index(i)
{

}

Producter::~Producter()
{
}


void Producter::start()
{
	int i = 0;//为了测试是哪个线程,加入了哪些数据用的
	while (true)
	{
		//int data = rand();
		m_pQueue.push(i*2+ index);// index =0 为偶数生产者,只生产偶数,index =1则是生产奇数
		Sleep(100);
		i++;
	}
}

运行结果如下:
生产者消费者模型 C++ 版_第1张图片

控制消费者有序消费

优先队列做缓存
头文件

#pragma once
#include
#include 
#include 
#include 
#include 
#include 

//最大产品数量
#define MAX_SIZE 20
/*


*/
template<typename T, class _Container = std::vector<T>, class _Pr = std::less<typename _Container::value_type>>
class threadsafe_priority_queue
{
public:
    threadsafe_priority_queue();
    ~threadsafe_priority_queue();

    void push(T new_value);
    bool empty() const;

    void wait_and_pop(T& value);

    std::shared_ptr<T> wait_and_pop();

    bool try_pop(T& value);

    std::shared_ptr<T> try_pop();


    void wait_and_pop(T& value, bool (*func)(const T&, int), int curIndex);

    std::shared_ptr<T> wait_and_pop(bool (*func)(const T&, int), int curIndex);

    bool try_pop(T& value, bool (*func)(const T&, int), int curIndex);

    std::shared_ptr<T> try_pop( bool (*func)(const T&, int), int curIndex);


private:
    mutable std::mutex mut;
    std::priority_queue<T, _Container, _Pr> data_queue;
    std::condition_variable data_cond;

};

实现

#include "threadsafe_priority_queue.h"
#include 
template<typename T, class _Container, class _Pr >
threadsafe_priority_queue<T, _Container, _Pr>::threadsafe_priority_queue()
{}

template<typename T, class _Container, class _Pr >
threadsafe_priority_queue<T, _Container, _Pr>::~threadsafe_priority_queue()
{
}


template<typename T, class _Container, class _Pr >
void threadsafe_priority_queue<T, _Container, _Pr>::wait_and_pop(T& value)  // 2
{
    std::unique_lock<std::mutex> lk(mut);
    data_cond.wait(lk, [this] {return !data_queue.empty(); });
    value = std::move(data_queue.front());
    data_queue.pop();
    std::cout << "Consumer pop : " << value << std::endl;
    data_cond.notify_all();
}

template<typename T, class _Container, class _Pr >
std::shared_ptr<T> threadsafe_priority_queue<T, _Container, _Pr>::wait_and_pop()  // 3
{
    std::unique_lock<std::mutex> lk(mut);
    data_cond.wait(lk, [this] {return !data_queue.empty(); });  // 4
    std::shared_ptr<T> res(
        std::make_shared<T>(std::move(data_queue.front())));
    data_queue.pop();
    data_cond.notify_all();
    return res;
}

template<typename T, class _Container, class _Pr >
bool threadsafe_priority_queue<T, _Container, _Pr>::try_pop(T& value)
{
    std::lock_guard<std::mutex> lk(mut);
    if (data_queue.empty())
        return false;
    value = std::move(data_queue.front());
    data_queue.pop();
    data_cond.notify_all();
    return true;
}

template<typename T, class _Container, class _Pr >
std::shared_ptr<T> threadsafe_priority_queue<T, _Container, _Pr>::try_pop()
{
    std::lock_guard<std::mutex> lk(mut);
    if (data_queue.empty())
        return std::shared_ptr<T>();  // 5
    std::shared_ptr<T> res(
        std::make_shared<T>(std::move(data_queue.front())));
    data_queue.pop();
    data_cond.notify_all();
    return res;
}

template<typename T, class _Container, class _Pr >
void threadsafe_priority_queue<T, _Container, _Pr>::push(T new_value)
{
    std::unique_lock<std::mutex> lk(mut);
    data_cond.wait(lk, [this] {return data_queue.size() < MAX_SIZE; });
    std::cout.flags(std::ios::left);  //左对齐
    std::cout << "Producter push : " << new_value << std::endl;
    data_queue.push(std::move(new_value));

    data_cond.notify_all();  // 1
}

template<typename T, class _Container, class _Pr >
bool threadsafe_priority_queue<T, _Container, _Pr>::empty() const
{
    std::lock_guard<std::mutex> lk(mut);
    return data_queue.empty();
}



template<typename T, class _Container, class _Pr >
void threadsafe_priority_queue<T, _Container, _Pr>::wait_and_pop(T& value, bool (*func)(const T&, int), int curIndex )
{
    std::unique_lock<std::mutex> lk(mut);
    data_cond.wait(lk, [this, func, curIndex] {
        if (!data_queue.empty() && func(data_queue.top(), curIndex))
        {
            return true;
        }
        if (!data_queue.empty())
            std::cout << "top value: " << data_queue.top() << " ,current index : " << curIndex << std::endl;
        return false;
        });
    value = std::move(data_queue.top());
    data_queue.pop();
   //右对齐
    std::cout << std::setw(100) << setiosflags(std::ios::right)<< "Consumer pop : " << value << std::endl;
    data_cond.notify_all();
}

template<typename T, class _Container, class _Pr >
std::shared_ptr<T> threadsafe_priority_queue<T, _Container, _Pr>::wait_and_pop(bool (*func)(const T&, int), int curIndex)
{
    std::unique_lock<std::mutex> lk(mut);
    data_cond.wait(lk, [this, func, curIndex] {
        if (!data_queue.empty() && func(data_queue.front(), curIndex))
        {
            return true;
        }
        return false; 
        });  // 4
    std::shared_ptr<T> res(
        std::make_shared<T>(std::move(data_queue.front())));
    data_queue.pop();
    data_cond.notify_all();
    return res;
}

template<typename T, class _Container, class _Pr >
bool threadsafe_priority_queue<T, _Container, _Pr>::try_pop(T& value, bool (*func)(const T&, int), int curIndex)
{
    std::lock_guard<std::mutex> lk(mut);
    if (data_queue.empty() || func(data_queue.front(), curIndex))
    {
        return std::shared_ptr<T>();
    }
    std::shared_ptr<T> res(
        std::make_shared<T>(std::move(data_queue.front())));
    data_queue.pop();
    data_cond.notify_all();
    return res;
}


template<typename T, class _Container, class _Pr >
std::shared_ptr<T>  threadsafe_priority_queue<T, _Container, _Pr>::try_pop(bool (*func)(const T&, int), int curIndex)
{
    std::lock_guard<std::mutex> lk(mut);
    if (data_queue.empty() || func(data_queue.front(), curIndex))
    {
        return std::shared_ptr<T>();
    }
       
    std::shared_ptr<T> res(
        std::make_shared<T>(std::move(data_queue.front())));
    data_queue.pop();
    data_cond.notify_all();
    return res;
}

生产者

#include "threadsafe_priority_queue.h"
class Producter2
{
public:
	Producter2(threadsafe_priority_queue<int, std::vector<int>, std::greater<int>>& queue, int i);
	~Producter2();
	void start();

private:
	threadsafe_priority_queue<int, std::vector<int>, std::greater<int>>& m_pQueue;
	int index;
};

Producter2::Producter2(threadsafe_priority_queue<int, std::vector<int>, std::greater<int>>& queue, int i)
	: m_pQueue(queue), index(i)
{

}

Producter2::~Producter2()
{
}


void Producter2::start()
{
	int i = 0;
	while (i < 200)
	{
		//int data = rand();
		m_pQueue.push(i * 3 + index);
		Sleep(30);
		i++;
	}
}

消费者

 #include "threadsafe_priority_queue.h"

class Consumer2
{
public:
	Consumer2(threadsafe_priority_queue<int, std::vector<int>, std::greater<int>>& queue);
	~Consumer2();
	void start();

private:
	threadsafe_priority_queue<int, std::vector<int>, std::greater<int>>& m_pQueue;
	int m_curIndex=-1;
};

Consumer2::Consumer2(threadsafe_priority_queue<int, std::vector<int>, std::greater<int>>& queue)
	: m_pQueue(queue)
{

}

Consumer2::~Consumer2()
{
}

bool compare( const int & nextIndex,int curindex)
{
	return nextIndex == (curindex + 1);
}

void Consumer2::start()
{
	int i = 0;
	while (i < 200)
	{
		int value;
		m_pQueue.wait_and_pop(value, compare, m_curIndex);
		m_curIndex++;
		Sleep(10);
		i++;
	}
}

main函数


#include 
#include "Producter.h"
#include "Consumer.h"
# include
#include"threadsafe_queue.h"
#include"threadsafe_queue.cpp"
#include
#include "threadsafe_priority_queue.h"
#include "threadsafe_priority_queue.cpp"

int main()
{
	threadsafe_priority_queue<int, std::vector<int>, std::greater<int>> queue;
	Consumer2 aonsumer(queue);
	Producter2 producter(queue,0);
	Producter2 producter2(queue, 1);
	Producter2 producter3(queue, 2);
	std::thread tProducter3(&Producter2::start, &producter3);
	std::thread tProducter2(&Producter2::start, &producter2);
	std::thread tProducter1(&Producter2::start, &producter);
	std::thread tConsumer(&Consumer2::start, &aonsumer);
	
	tConsumer.join();
	tProducter3.join();
	tProducter2.join();
	tProducter1.join();
	return 0;

}

生产者消费者模型 C++ 版_第2张图片

你可能感兴趣的:(C++,c++,算法)