- 深度学习框架探秘|TensorFlow vs PyTorch:AI 框架的巅峰对决
紫雾凌寒
智启前沿:AI洞察・创未来人工智能深度学习tensorflowpytorchai
在深度学习框架中,TensorFlow和PyTorch无疑是两大明星框架。前面两篇文章我们分别介绍了TensorFlow(点击查看)和PyTorch(点击查看)。它们引领着AI开发的潮流,吸引着无数开发者投身其中。但这两大框架究竟谁更胜一筹?是TensorFlow的全面与稳健,还是PyTorch的灵活与便捷?让我们一同深入剖析,探寻答案。在深度学习框架中,TensorFlow和PyTorch无疑是
- Ollama容器+打造DeepSeek-R1-7B大模型
码哝小鱼
AI大模型docker运维语言模型
1、获取Ollama官方镜像1.1在线拉取镜像#dokcerpullollama/ollama:0.5.71.2导入离线镜像#tar-zxfollama0.5.7_x86.tar.gz#dokcerload-iollama0.5.7.tar2、执行以下命令创建与启动ollama#dockerrun-dp8880:11434--nameollama\-eOLLAMA_HOST=0.0.0.0:114
- Day47(补)【软考】2022年下半年软考软件设计师综合知识真题-计算机软件知识2
一个一定要撑住的学习者
#软件设计师算法
文章目录2022年下半年软考软件设计师综合知识真题第1章计算机系统基础知识(18/38)计算机软件知识2-6/6(其中一个做过)哲学概念及收敛思维:分母为0的故障哲学分类,考事务故障集合除数为零是否属于事务故障?哲学概念及收敛思维:Python3列表截取[max,min,-n]的哲学理解,输入-,考集合排列从大到小,range和list输入,考结束值min不在集合中哲学概念及收敛思维:**栈帧的核
- Java关键字static
我尽力学
java开发语言
Java关键字static一、static是什么?static是Java中的关键字,用于修饰类成员(变量、方法、代码块、内部类)或实现静态导包。它的核心作用是让成员脱离对象依赖,直接通过类访问。好比班级里的公共黑板(static修饰的成员),所有学生(对象)共用同一块黑板;而每个学生的课桌(普通成员)则是各自独立的。二、static的五大用法1.静态变量:共享的“公共财产”特点:所有对象共享同一份
- 为什么DevOps很好,但却很难落地
devops
DevOps的优势在于加速交付、提升协作效率、增强系统稳定性,但落地难的核心原因集中在文化冲突、技术复杂性、流程脱节三大层面。以文化冲突为例,传统开发与运维团队的“部门墙”是最大阻碍。开发团队追求快速迭代,而运维团队强调稳定可控,两者的目标天然对立。根据2023年《全球DevOps现状报告》,78%的企业承认“跨部门协作不足”是转型失败的主因。正如GeneKim在《DevOps实践指南》中所说:“
- Python自学攻略:AI时代的高效学习法 —— 如何用大模型快速上手编程
优化小秦
人工智能
在AI技术爆发的今天,学习Python已不再是传统的“看书+敲代码”模式。借助大语言模型(如Deepseek、GPT、Claude、Kimi、豆包等),学习效率可以提升数倍。本文将结合实操路径、工具链和避坑指南,为你提供一套AI时代的Python速成方案。一、为什么AI能让Python学习效率飙升?实时纠错与解释传统学习:遇到报错需反复查资料,耗时且挫败感强AI辅助:直接将错误信息丢给大模型,1秒
- 【大模型】阿里云百炼平台对接DeepSeek-R1大模型使用详解
小码农叔叔
AI大模型实战与应用DeepSeek-R1使用阿里云对接DeepSeek百炼平台使用DeepSeekDeepSeek使用详解DeepSeek-R1使用详解DeepSeek-R1
目录一、前言二、DeepSeek简介2.1DeepSeek是什么2.2DeepSeekR1特点2.2.1DeepSeek-R1创新点2.3DeepSeekR1应用场景2.4与其他大模型对比三、阿里云百炼大平台介绍3.1阿里云百炼大平台是什么3.2阿里云百炼平台主要功能3.2.1应用场景3.3为什么选择阿里云百炼平台四、前置准备4.1注册百炼平台账户4.2获取apikey4.3本地安装python环
- python分支结构说课_Python程序设计 循环结构说课稿
程籽籽
python分支结构说课
循环结构程序设计——实现复杂计算程序一、说教材1.教材地位分析教材是由湖北省中小学教材编写组编写的义务教育教科书《信息技术》。其中《循环结构程序设计》是初中信息技术课本第三册的第七单元“Python程序设计(下)”的第26课的内容。本节课的内容是在上节课选择结构的基础上进行的。循环结构作为Python程序设计的三大基本结构之一,有助于学生更好的解决生活中的实际问题,通过这节课的学习,学生会对循环结
- python分支结构说课_Python程序设计 选择结构说课稿
爱吃可颂
python分支结构说课
选择结构程序设计——偏胖还是偏瘦?一、说教材1.教材地位分析教材是由湖北省中小学教材编写组编写的义务教育教科书《信息技术》。其中《选择结构程序设计》是初中信息技术课本第三册的第七单元“Python程序设计(上)”的第25课的内容。本节课的内容是在上节课顺序结构的基础上进行的。选择结构作为Python程序设计的三大基本结构之一,有助于学生更好的解决生活中的实际问题,通过这节课的学习,学生会对顺序结构
- 前端三大主流框架:React、Vue、Angular
m0_54851477
前端react.jsvue.js
文章目录一、React、Vue、Angular简介二、React初始化案例三、Vue初始化案例四、Angular初始化案例五、相关链接一、React、Vue、Angular简介前端三大主流框架分别是Angular、React和Vue。以下是这三个框架的详细概述:Angular:Angular原名AngularJS,诞生于2009年,由Google开发并维护。它是一个完整的框架,提供了数据绑定、组件
- Hadoop综合项目——二手房统计分析(可视化篇)
WHYBIGDATA
大数据项目hadoop大数据
Hadoop综合项目——二手房统计分析(可视化篇)文章目录Hadoop综合项目——二手房统计分析(可视化篇)0、写在前面1、数据可视化1.1二手房四大一线城市总价Top51.2统计各个楼龄段的二手房比例1.3统计各个城市二手房标签的各类比例1.4统计各个城市各个楼层的平均价格1.5统计各个城市二手房优势的各类比例1.6统计各个城市二手房数量和关注人数的关系1.7统计各个城市二手房规格的各类比例1.
- Mooncake:kimi后端推理服务的架构设计
风生水气
大模型应用技术栈大模型人工智能ai语言模型后端
前言本文依托论文《Mooncake:AKVCache-centricDisaggregatedArchitectureforLLMServing》来讲解kimi的后端服务架构Mooncake,并按照自己的思路来梳理论文中的一些关键信息。背景服务端面临的问题随着大模型技术越来越强,很多应用都是以Maas(ModelasaService)的方式对外提供服务,服务端的能力受模型的能力约束。对于C端应用来
- 《深入浅出多模态》 (五):多模态经典模型ALBEF
GoAI
深入浅出多模态多模态大模型LLM深度学习人工智能
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:</
- KTransformers:告别天价显卡!国产框架让单卡24G显存跑DeepSeek-R1 671B大模型:推理速度飙升28倍
蚝油菜花
每日AI项目与应用实例人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!微信公众号|搜一搜:蚝油菜花“还在为千亿模型租天价显卡?清华团队用CPU/GPU协同计算,让4090跑起671B参数全量模型!”大家好,我是蚝油菜花。如果你也经历过——看着API调用账单瑟瑟发抖,微调一次模型吃掉半月算力预算️盯着OOM报错抓狂,为了
- 【大模型实战】零门槛入门AgentScope多智能体游戏开发:和Agent玩飞花令
南七小僧
服务器开发网站开发人工智能数据库服务器运维
1.项目起因最近,阿里开源了一款全新的多智能体协同的Multi-Agent应用框架-AgentScope,早先的单智能体还只能完成对话类等一些简单的应用,通过调用外部API(如搜索绘画配音等)也只是拓展了单智能体的能力边界。如果能够调用多个智能体,并做好多个智能体之间的协同配合,就能够打造出内容和样式更加丰富的应用。中国古典诗词中的经典游戏(如飞花令尾字接龙即景联诗九宫格)等,非常考验选手的知识储
- 教您如何选购触觉力反馈设备
宋13810279720
力反馈机器人人工智能计算机外设3d硬件工程
触觉力反馈技术是指在人机交互过程中,计算机对用户的输入做出响应,并通过力反馈设备作用于用户的过程。它是一种机械装置表现出来的反作用力,将力反馈设备与环境中物体交互的信息转化成用户能够感知的力的效果,如触碰物体的阻力、举起物体的重力和“触摸”物体表面的摩擦力。可以沟通交流,力反馈全系列。目前全球市场上基本被三大品牌垄断。分别为:美国3Dsystems(Geomagic/Sensable),瑞士For
- 英码科技基于昇腾算力实现DeepSeek离线部署
英码科技
科技
DeepSeek-R1模型以其创新架构和高效能技术迅速成为行业焦点。如果能够在边缘进行离线部署,不仅能发挥DeepSeek大模型的效果,还能确保数据处理的安全性和可控性。英码科技作为AI算力产品和AI应用解决方案服务商,积极响应市场需求,率先完成了昇腾系列产品与DeepSeek模型的深度适配。从硬件调校到软件优化,英码科技确保了昇腾系列产品的稳定、高效适配,为用户提供了更具竞争力的部署选择。Dee
- 95%人都不知道的,或许是最全DeepSeek 提示词合集、使用技巧与代码实现全攻略【建议收藏】
大F的智能小课
python开发语言人工智能算法
一、引言DeepSeek作为一款强大的AI大语言模型工具,凭借其高效、灵活的特点,受到了众多开发者和用户的青睐。本文将全面介绍DeepSeek的提示词合集、使用技巧以及代码实现方法,帮助读者更好地利用这一工具,提升工作效率和创造力。二、DeepSeek提示词合集(一)代码处理代码改写:优化代码,进行纠错、注释、调优等。示例:请对以下代码进行优化,提高运行效率:[代码片段]对代码进行修改,来实现纠错
- 【vLLM 学习】安装
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/vLLM是一个Python库,包含预编译的C++和CUDA(12.1)二进制文件。依赖环境操作系统:LinuxPython:3.8-3.12GPU:计算能力7.0或更高(例如V100、T4、RTX20xx、A100、L
- Android App开发之Jetpack架构,带你全面理解View的绘制流程
m0_66144992
程序员架构移动开发android
在UI组件日益完善的同时,也开始出现了RecyclerView、ConstraintLayout、MotionLayout等一些可以辅助大家写出更加符合性能要求的界面效果。在UI控件日益满足需求的同时,系统的安全与稳定性、用户隐私也越来越被重视,所以每个版本都出现了一些大的适配工作,例如运行时权限,FileProvider适配,限制后台服务、广播,限制反射SDK私有API,引导使用HTTPS,甚至
- 读算法简史:从美索不达米亚到人工智能时代15读后总结与感想兼导读
躺柒
人工智能算法导读总结AI
1.基本信息算法简史:从美索不达米亚到人工智能时代克里斯·布利克利著中信出版集团股份有限公司,2024年9月出版1.1.读薄率书籍总字数18.6万字,笔记总字数51653字。读薄率51653÷186000≈27.77%1.2.读厚方向当我点击时,算法在想什么?算法霸权极简算法史:从数学到机器的故事算法的陷阱:超级平台、算法垄断与场景欺骗天才与算法:人脑与AI的数学思维算法图解1.3.笔记--章节对
- 基于 LLM 的智能运维 Agent 系统设计与实现
LLM教程
人工智能embeddingLLMpython大模型Agent智能体
摘要本文详细介绍了一个基于大语言模型(LLM)的智能运维Agent系统的设计与实现。该系统采用多Agent协同的架构,通过事件驱动的方式实现了自动化运维流程。系统集成了先进的AI能力,能够实现故障自动诊断、预测性维护、知识沉淀等核心功能。一、运维Agent架构设计在设计智能运维Agent系统时,我们采用了模块化和事件驱动的架构思想,将复杂的运维场景分解为多个独立的能力域,并通过消息总线实现各组件的
- 智能巡检机器人在电力行业的应用
zxsz_com_cn
智能巡检系统人工智能网络数据库
一、引言在电力行业中,保障电力设备的安全稳定运行至关重要。传统的人工巡检方式存在劳动强度大、效率低、容易出现漏检和误判等问题。随着科技的发展,智能巡检机器人应运而生,并在电力行业中得到了广泛而深入的应用,为电力系统的可靠运行提供了有力保障。二、智能巡检机器人在电力行业的应用场景(一)变电站巡检设备外观检查智能巡检机器人配备高清摄像头和图像识别技术,能够对变电站内的变压器、断路器、隔离开关、互感器等
- LLaMA3大模型技术全网最全解析——模型架构与训练方法(收录于GPT-4/ChatGPT技术与产业分析)
chenweiPhD
人工智能深度学习语言模型架构
Meta在周四(4月18日)发布了其最新大型语言模型LLaMA3。该模型将被集成到其虚拟助手MetaAI中。Meta自称8B和70B的LLaMA3是当今8B和70B参数规模的最佳模型,并在推理、代码生成和指令跟踪方面有了很大进步。(点赞是我们分享的动力)--------------------------------------------------主编作者陈巍博士,高级职称,曾担任华为系相关自
- 简化版奇异值分解(SVD)方法详解
DuHz
数理统计学知识机器学习人工智能算法信息与通信信号处理
简化版奇异值分解(SVD)方法详解奇异值分解(SVD)是一个强大的矩阵分解工具,广泛应用于数据降维、图像压缩、机器学习等领域。然而,对于大规模数据或高维矩阵,计算和存储的开销非常大,因此提出了多种简化版的SVD方法。这些简化版方法在保证解的精度的同时,能够显著减少计算量和内存占用。本文将详细介绍几种简化版SVD方法,包括经济型SVD、随机化SVD、增量SVD、分块SVD和偏最小二乘法(PLS),并
- 私有AI对话系统实战:基于Ollama+OpenWebUI的DeepSeek-R1本地化部署手把手教学(可共享访问)
Developer-YC
DeekSeek-R1大模型解读与实战教学人工智能pythonjavagithubnode.js语言模型后端
引言:为什么选择本地部署大模型?在数据隐私日益重要的今天,云端AI服务的局限性逐渐显现——敏感信息泄露风险、网络延迟依赖、定制化能力不足。而通过**Ollama(模型管理框架)和OpenWebUI(可视化交互工具)**的组合,开发者可以轻松实现大模型(如DeepSeek-R1)的本地部署,兼顾性能与安全。本文将以DeepSeek-R1为例,详解从环境配置到实战应用的全流程。一、工具与模型简介1.O
- 理论一、大模型—概念
伯牙碎琴
大模型自然语言处理ai
一、总述大模型通常指的是参数规模庞大、训练难度较高的人工智能模型。随着深度学习技术的发展,研究人员和企业越来越倾向于构建更大的模型,以提高模型的性能和泛化能力。这些大模型往往需要大量的数据和计算资源来训练,并且在实际应用中通常表现出色。大模型全称是大型语言模型(LLM,LargeLanguageModel),这个“大”主要指模型结构容量大,结构中的参数多,用于预训练大模型的数据量大。一个大模型可以
- 一、大模型微调的前沿技术与应用
伯牙碎琴
大模型微调人工智能大模型微调Deepseek
大模型微调的前沿技术与应用随着大规模预训练模型(如GPT、BERT、T5等)的广泛应用,大模型微调(Fine-Tuning,FT)成为了提升模型在特定任务中性能的关键技术。通过微调,开发者可以根据实际需求调整预训练模型的参数,使其更好地适应特定应用场景。本文将介绍大模型微调技术的前沿发展,分析不同微调方法的特点、适用场景以及优缺点,并对它们进行系统分类。微调技术的重要性大模型微调能够帮助开发者根据
- 玩转代理模式
清泓y
六大常见设计模式代理模式设计模式c++
文章目录什么是代理模式举例:代理模式结构代理模式适用场景实现方式代理模式的优缺点优点:缺点:什么是代理模式代理模式,主要用途就是代理一个某一个所需要的物件,但是我们不直接使用这个物件,我们用一个代理接口来代替我们使用这个物件。举例:信用卡是银行账户的代理,银行账户则是一大捆现金的代理。它们都实现了同样的接口,均可用于进行支付。消费者会非常满意,因为不必随身携带大量现金;商店老板同样会十分高兴,因为
- 岛屿数量(leetcode200)
友人yq
搜索算法数据结构
题目给你一个由'1'(陆地)和'0'(水)组成的的二维网格,请你计算网格中岛屿的数量。岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。此外,你可以假设该网格的四条边均被水包围。思考采用bfs。过程为:在遍历整个图的时候,在遍历到1时,进行广度搜索遍历,搜索遍历所遇到的1全改为0;当这次广度遍历不再遍历到1时,则本次广度遍历结束,岛屿数量加一。遍历完整个图,只需要知道
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文