Glide源码分析-缓存与复用机制

1 Glide缓存与复用机制简介

1.1 Glide的资源状态可以分为四种

  1. Active Resources:有其他View正在展示这张图片
  2. Memory cache:该图片被存进内存中
  3. Resource:经过decode、transformed后的缓存
  4. Data:原始的没有修改过的数据缓存

Glide读取缓存也是依次从上面四种状态的缓存中读取,如果都未能找到图片,则Glide会返回到原始资源以取回数据(原始文件,Uri, Url等)

1.2 Glide中Bitmap复用机制

复用:

将已经不需要使用的数据空间重新拿来使用,减少内存抖动(指在短时间内有大量的对象被创建或者被回收的现象)

原理:

inMutable是Glide能够复用Bitmap的基石,是BitmapFactory提供的一个参数,表示该Bitmap是可变的,支持复用的。BitmapFactory.Options中提供了两个属性:inMutable、inBitmap。当进行Bitmap复用时,需要设置inMutable为true,inBitmap设置被复用的已经存在的Bitmap。Bitmap复用池使用LRU算法实现。

Bitmap复用使用条件:
  • 在Android 4.4之前,仅支持相同大小的Bitmap,inSampleSize必须为1,而且必须采用jpeg或png格式。
  • 在Android 4.4之后只有一个限制,就是被复用的Bitmap尺寸要大于 新的bitmap,简单来说就是大图可以给小图复用。

2 缓存源码流程

在Glide源码分析-网络图片加载主流程分析一文中,我们已经知道memory cache和disk cache在Glide创建的时候也被创建了,Glide创建的代码在GlideBuilder.build(Context)方法

@NonNull
Glide build(@NonNull Context context) {
  if (memoryCache == null) {
    memoryCache = new LruResourceCache(memorySizeCalculator.getMemoryCacheSize());
  }

  if (diskCacheFactory == null) {
    diskCacheFactory = new InternalCacheDiskCacheFactory(context);
  }

  if (engine == null) {
    engine =
        new Engine(
            memoryCache,
            diskCacheFactory,
            ...);
  }

  return new Glide(
      ...
      memoryCache,
      ...);
}

2.1 memoryCache

通过代码可以看到 memoryCache 被放入 Engine 和 Glide 实例中。在Engine中利用memoryCache进行存取操作,Glide 实例中的memoryCache是用来在内存紧张的时候,通知memoryCache释放内存。Glide实现了ComponentCallbacks2接口,在Glide创建完成后,通过applicationContext.registerComponentCallbacks(glide)似的 Glide 实例可以监听内存紧张的信号。


// Glide
@Override
public void onTrimMemory(int level) {
  trimMemory(level);
}

public void trimMemory(int level) {
  // Engine asserts this anyway when removing resources, fail faster and consistently
  Util.assertMainThread();
  // memory cache needs to be trimmed before bitmap pool to trim re-pooled Bitmaps too. See #687.
  memoryCache.trimMemory(level);
  bitmapPool.trimMemory(level);
  arrayPool.trimMemory(level);
}

memoryCache是一个使用LRU(least recently used)算法实现的内存缓存类LruResourceCache,继承至LruCache类,并实现了MemoryCache接口。LruCache定义了LRU算法实现相关的操作,而MemoryCache定义的是内存缓存相关的操作。

LruCache 的实现是利用了 LinkedHashMap 的这种数据结构的一个特性( accessOrder=true 基于访问顺序 )再加上对 LinkedHashMap 的数据操作上锁实现的缓存策略。

当调用 put()方法时,就会在集合中添加元素,并调用
trimToSize()判断缓存是否已满,如果满了就用 LinkedHashMap 的迭代器删除队尾元素,即近期最少访问的元素。

当调用 get()方法访问缓存对象时,就会调用 LinkedHashMap 的 get()方法获得对应集合元素,同时会更新该元素到队头。

2.2 diskCacheFactory

diskCacheFactory是创建DiskCache的Factory,DiskCache接口定义

public interface DiskCache {

  interface Factory {
    /** 250 MB of cache. */
    int DEFAULT_DISK_CACHE_SIZE = 250 * 1024 * 1024;
    String DEFAULT_DISK_CACHE_DIR = "image_manager_disk_cache";

    @Nullable
    DiskCache build();
  }

  interface Writer {
    boolean write(@NonNull File file);
  }

  @Nullable
  File get(Key key);

  void put(Key key, Writer writer);

  @SuppressWarnings("unused")
  void delete(Key key);

  void clear();
}

接着再来看下DiskCache.Factory的默认实现:InternalCacheDiskCacheFactory

public final class InternalCacheDiskCacheFactory extends DiskLruCacheFactory {

  public InternalCacheDiskCacheFactory(Context context) {
    this(context, DiskCache.Factory.DEFAULT_DISK_CACHE_DIR,
        DiskCache.Factory.DEFAULT_DISK_CACHE_SIZE);
  }

  public InternalCacheDiskCacheFactory(Context context, long diskCacheSize) {
    this(context, DiskCache.Factory.DEFAULT_DISK_CACHE_DIR, diskCacheSize);
  }

  public InternalCacheDiskCacheFactory(final Context context, final String diskCacheName,
                                       long diskCacheSize) {
    super(new CacheDirectoryGetter() {
      @Override
      public File getCacheDirectory() {
        File cacheDirectory = context.getCacheDir();
        if (cacheDirectory == null) {
          return null;
        }
        if (diskCacheName != null) {
          return new File(cacheDirectory, diskCacheName);
        }
        return cacheDirectory;
      }
    }, diskCacheSize);
  }
}

由以上代码可以看出:默认会创建一个250M的缓存目录,其路径为/data/data/{package}/cache/image_manager_disk_cache/

继续看其父类DiskLruCacheFactory的代码

public class DiskLruCacheFactory implements DiskCache.Factory {
  private final long diskCacheSize;
  private final CacheDirectoryGetter cacheDirectoryGetter;

  public interface CacheDirectoryGetter {
    File getCacheDirectory();
  }
  
  ...
  
  public DiskLruCacheFactory(CacheDirectoryGetter cacheDirectoryGetter, long diskCacheSize) {
    this.diskCacheSize = diskCacheSize;
    this.cacheDirectoryGetter = cacheDirectoryGetter;
  }

  @Override
  public DiskCache build() {
    File cacheDir = cacheDirectoryGetter.getCacheDirectory();

    if (cacheDir == null) {
      return null;
    }

    if (!cacheDir.mkdirs() && (!cacheDir.exists() || !cacheDir.isDirectory())) {
      return null;
    }

    return DiskLruCacheWrapper.create(cacheDir, diskCacheSize);
  }
}

DiskLruCacheFactory.build()方法会返回一个DiskLruCacheWrapper类的实例,看下DiskLruCacheWrapper的实现

public class DiskLruCacheWrapper implements DiskCache {
  private static final String TAG = "DiskLruCacheWrapper";

  private static final int APP_VERSION = 1;
  private static final int VALUE_COUNT = 1;
  private static DiskLruCacheWrapper wrapper;

  private final SafeKeyGenerator safeKeyGenerator;
  private final File directory;
  private final long maxSize;
  private final DiskCacheWriteLocker writeLocker = new DiskCacheWriteLocker();
  private DiskLruCache diskLruCache;

  @SuppressWarnings("deprecation")
  public static DiskCache create(File directory, long maxSize) {
    return new DiskLruCacheWrapper(directory, maxSize);
  }

  @Deprecated
  @SuppressWarnings({"WeakerAccess", "DeprecatedIsStillUsed"})
  protected DiskLruCacheWrapper(File directory, long maxSize) {
    this.directory = directory;
    this.maxSize = maxSize;
    this.safeKeyGenerator = new SafeKeyGenerator();
  }

  private synchronized DiskLruCache getDiskCache() throws IOException {
    if (diskLruCache == null) {
      diskLruCache = DiskLruCache.open(directory, APP_VERSION, VALUE_COUNT, maxSize);
    }
    return diskLruCache;
  }

  @Override
  public File get(Key key) {
    String safeKey = safeKeyGenerator.getSafeKey(key);
    File result = null;
    try {
      final DiskLruCache.Value value = getDiskCache().get(safeKey);
      if (value != null) {
        result = value.getFile(0);
      }
    } catch (IOException e) {
      ...
    }
    return result;
  }
  
  @Override
  public void put(Key key, Writer writer) {
    String safeKey = safeKeyGenerator.getSafeKey(key);
    writeLocker.acquire(safeKey);
    try {
      try {
        
        DiskLruCache diskCache = getDiskCache();
        Value current = diskCache.get(safeKey);
        ...
        DiskLruCache.Editor editor = diskCache.edit(safeKey);
        ...
        try {
          File file = editor.getFile(0);
          if (writer.write(file)) {
            editor.commit();
          }
        } finally {
          editor.abortUnlessCommitted();
        }
      } catch (IOException e) {
        ...
      }
    } finally {
      writeLocker.release(safeKey);
    }
  }
  ...
}

顾名思义,里面包装了一个DiskLruCache,该类主要是为DiskLruCache提供了一个根据Key生成safeKey的SafeKeyGenerator以及写锁DiskCacheWriteLocker。

回到GlideBuilder.build(Context)中,diskCacheFactory会被传进Engine中,在Engine的构造方法中会被包装成为一个LazyDiskCacheProvider,在被需要的时候调用getDiskCache()方法,这样就会调用factory的build()方法返回一个DiskCache。代码如下:

private static class LazyDiskCacheProvider implements DecodeJob.DiskCacheProvider {

    private final DiskCache.Factory factory;
    private volatile DiskCache diskCache;

    LazyDiskCacheProvider(DiskCache.Factory factory) {
      this.factory = factory;
    }

    ...

    @Override
    public DiskCache getDiskCache() {
      if (diskCache == null) {
        synchronized (this) {
          if (diskCache == null) {
            diskCache = factory.build();
          }
          if (diskCache == null) {
            diskCache = new DiskCacheAdapter();
          }
        }
      }
      return diskCache;
    }
  }

LazyDiskCacheProvider会在Engine后面的初始化流程中作为入参传到DecodeJobFactory的构造器。在DecodeJobFactory创建DecodeJob时也会作为入参会传进去,DecodeJob中会以全局变量保存此LazyDiskCacheProvider,在资源加载完毕并展示后,会进行缓存的存储。同时,DecodeJob也会在DecodeHelper初始化时,将此DiskCacheProvider设置进去,供ResourceCacheGenerator、DataCacheGenerator读取缓存,供SourceGenerator写入缓存。

2.3 ActiveResources

ActiveResources在Engine的构造器中被创建,在ActiveResources的构造器中会启动一个后台优先级级别(THREAD_PRIORITY_BACKGROUND)的线程,在该线程中会调用cleanReferenceQueue()方法一直循环清除ReferenceQueue中的将要被GC的Resource。

final class ActiveResources {
  private final boolean isActiveResourceRetentionAllowed;
  private final Executor monitorClearedResourcesExecutor;
  @VisibleForTesting
  final Map activeEngineResources = new HashMap<>();
  private final ReferenceQueue> resourceReferenceQueue = new ReferenceQueue<>();

  private volatile boolean isShutdown;

  ActiveResources(boolean isActiveResourceRetentionAllowed) {
    this(
        isActiveResourceRetentionAllowed,
        java.util.concurrent.Executors.newSingleThreadExecutor(
            new ThreadFactory() {
              @Override
              public Thread newThread(@NonNull final Runnable r) {
                return new Thread(
                    new Runnable() {
                      @Override
                      public void run() {
                        Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
                        r.run();
                      }
                    },
                    "glide-active-resources");
              }
            }));
  }

  @VisibleForTesting
  ActiveResources(
      boolean isActiveResourceRetentionAllowed, Executor monitorClearedResourcesExecutor) {
    this.isActiveResourceRetentionAllowed = isActiveResourceRetentionAllowed;
    this.monitorClearedResourcesExecutor = monitorClearedResourcesExecutor;

    monitorClearedResourcesExecutor.execute(
        new Runnable() {
          @Override
          public void run() {
            cleanReferenceQueue();
          }
        });
  }

  @SuppressWarnings("WeakerAccess")
  @Synthetic void cleanReferenceQueue() {
    while (!isShutdown) {
      try {
        ResourceWeakReference ref = (ResourceWeakReference) resourceReferenceQueue.remove();
        cleanupActiveReference(ref);

        // This section for testing only.
        DequeuedResourceCallback current = cb;
        if (current != null) {
          current.onResourceDequeued();
        }
        // End for testing only.
      } catch (InterruptedException e) {
        Thread.currentThread().interrupt();
      }
    }
  }
}

先来看看ActiveResources的activate方法(保存)、deactivate方法(删除)的方法

  synchronized void activate(Key key, EngineResource resource) {
    ResourceWeakReference toPut =
        new ResourceWeakReference(
            key, resource, resourceReferenceQueue, isActiveResourceRetentionAllowed);

    ResourceWeakReference removed = activeEngineResources.put(key, toPut);
    if (removed != null) {
      removed.reset();
    }
  }

  synchronized void deactivate(Key key) {
    ResourceWeakReference removed = activeEngineResources.remove(key);
    if (removed != null) {
      removed.reset();
    }
  }

activate方法会将参数封装成为一个ResourceWeakReference,然后放入map中,如果对应的key之前有值,那么调用之前值的reset方法进行清除。deactivate方法先在map中移除,然后调用resource的reset方法进行清除。ResourceWeakReference继承WeakReference,内部只是保存了Resource的一些属性。

static final class ResourceWeakReference extends WeakReference> {
  @SuppressWarnings("WeakerAccess") @Synthetic final Key key;
  @SuppressWarnings("WeakerAccess") @Synthetic final boolean isCacheable;

  @Nullable @SuppressWarnings("WeakerAccess") @Synthetic Resource resource;

  @Synthetic
  @SuppressWarnings("WeakerAccess")
  ResourceWeakReference(
      @NonNull Key key,
      @NonNull EngineResource referent,
      @NonNull ReferenceQueue> queue,
      boolean isActiveResourceRetentionAllowed) {
    super(referent, queue);
    this.key = Preconditions.checkNotNull(key);
    this.resource =
        referent.isCacheable() && isActiveResourceRetentionAllowed
            ? Preconditions.checkNotNull(referent.getResource()) : null;
    isCacheable = referent.isCacheable();
  }
}

构造方法中调用了super(referent, queue),这样做可以让将要被GC的对象放入到ReferenceQueue中。而ActiveResources.cleanReferenceQueue()方法会一直尝试从queue中获取将要被GC的resource,然后调用cleanupActiveReference方法将resource从activeEngineResources中移除。cleanupActiveReference源码如下:

  void cleanupActiveReference(@NonNull ResourceWeakReference ref) {
    
    synchronized (listener) {
      synchronized (this) {
        
        // 移除active资源
        activeEngineResources.remove(ref.key);
        
        if (!ref.isCacheable || ref.resource == null) {
          return;
        }
        // 构造新的 Resource
        EngineResource newResource =
            new EngineResource<>(ref.resource, /*isCacheable=*/ true, /*isRecyclable=*/ false);
        newResource.setResourceListener(ref.key, listener);
        // 回调Engine的onResourceReleased方法
        // 这会导致此资源从active变成memory cache状态
        listener.onResourceReleased(ref.key, newResource);
      }
    }
  }

Engine实现了EngineResource.ResourceListener,此处的listener就是Engine,最终会回调Engine.onResourceReleased

  @Override
  public synchronized void onResourceReleased(Key cacheKey, EngineResource resource) {
    activeResources.deactivate(cacheKey);
    if (resource.isCacheable()) {
      cache.put(cacheKey, resource);
    } else {
      resourceRecycler.recycle(resource);
    }
  }

如果资源可以被缓存,则缓存到 memory cache,否则对资源进行回收。

2.4 磁盘缓存读取

了解了上述三种缓存后我们分析下缓存的存取代码。我们看下

public synchronized  LoadStatus load(...) {
  EngineKey key = keyFactory.buildKey(model, signature, width, height, transformations,
      resourceClass, transcodeClass, options);

  EngineResource active = loadFromActiveResources(key, isMemoryCacheable);
  if (active != null) {
    cb.onResourceReady(active, DataSource.MEMORY_CACHE);
    return null;
  }

  EngineResource cached = loadFromCache(key, isMemoryCacheable);
  if (cached != null) {
    cb.onResourceReady(cached, DataSource.MEMORY_CACHE);
    return null;
  }

  EngineJob current = jobs.get(key, onlyRetrieveFromCache);
  if (current != null) {
    current.addCallback(cb, callbackExecutor);
    return new LoadStatus(cb, current);
  }

  EngineJob engineJob =
      engineJobFactory.build(...);

  DecodeJob decodeJob =
      decodeJobFactory.build(...);

  jobs.put(key, engineJob);

  engineJob.addCallback(cb, callbackExecutor);
  engineJob.start(decodeJob);

  return new LoadStatus(cb, engineJob);
}

缓存需要根据EngineKey去存取,先看下EngineKey的构造方法

EngineKey(
      
      Object model,
      Key signature,
      int width
      int height,
      Map, Transformation> transformations,
      Class resourceClass,
      Class transcodeClass,
      Options options)
  • model
    load方法传的参数

  • signature
    BaseRequestOptions的成员变量,默认会是EmptySignature.obtain()
    在加载本地resource资源时会变成ApplicationVersionSignature.obtain(context)

  • width、height
    如果没有指定override(int size),那么将得到view的size

  • transformations
    默认会基于ImageView的scaleType设置对应的四个Transformation;
    如果指定了transform,那么就基于该值进行设置

  • resourceClass
    解码后的资源,如果没有asBitmap、asGif,一般会是Object

  • transcodeClass
    最终要转换成的数据类型,根据as方法确定,加载本地res或者网络URL,都会调用asDrawable,所以为Drawable

  • options
    如果没有设置过transform,此处会根据ImageView的scaleType默认指定一个option

所以,在多次加载同一个model的过程中,只要上述任何一个参数有改变,都不会认为是同一个key。

回到Engine.load方法,从缓存加载成功后的回调cb.onResourceReady(cached, DataSource.MEMORY_CACHE);可以看到:active状态的资源和memory cache状态的资源都是DataSource.MEMORY_CACHE,并且加载的资源都是 EngineResource 对象,该对象内部采用了引用计数去判断资源是否被释放,如果引用计数为0,那么会调用listener.onResourceReleased(key, this)方法通知外界此资源已经释放了。这里的listener是ResourceListener类型的接口,只有一个onResourceReleased(Key key, EngineResource resource)方法,Engine实现了该接口,此处的listener就是Engine。在Engine.onResourceReleased方法中会判断资源是否可缓存,可缓存则将此资源放入memory cache中,否则回收掉该资源,代码如下:

  public synchronized void onResourceReleased(Key cacheKey, EngineResource resource) {
    // 从activeResources中移除
    activeResources.deactivate(cacheKey);
    if (resource.isCacheable()) {
      // 存入 MemoryCache
      cache.put(cacheKey, resource);
    } else {
      resourceRecycler.recycle(resource);
    }
  }

继续回到Engine.load方法,先来看下active资源获取的方法

  @Nullable
  private EngineResource loadFromActiveResources(Key key, boolean isMemoryCacheable) {
  
    // 设置skipMemoryCache(true),则isMemoryCacheable为false,跳过ActiveResources
    if (!isMemoryCacheable) {
      return null;
    }
    EngineResource active = activeResources.get(key);
    if (active != null) {
      // 命中缓存,引用计数+1
      active.acquire();
    }

    return active;
  }

继续分析cached资源获取的方法,如果从active资源中没有获取到缓存,则继续从内存缓存中查找

  private EngineResource loadFromCache(Key key, boolean isMemoryCacheable) {
  
    // 设置skipMemoryCache(true),则isMemoryCacheable为false,跳过ActiveResources
    if (!isMemoryCacheable) {
      return null;
    }

    EngineResource cached = getEngineResourceFromCache(key);
    if (cached != null) {
      // 命中缓存,引用计数+1
      cached.acquire();
      // 将此资源从memoryCache中移到activeResources中
      activeResources.activate(key, cached);
    }
    return cached;
  }

如果从memoryCache中获取到资源则将此资源从memoryCache中移到activeResources中。第一次加载的时候activeResources和memoryCache中都没有缓存的,后面继续通过DecodeJob和EngineJob去加载资源。DecoceJob实现了Runnable接口,然后会被EngineJob.start方法提交到对应的线程池中去执行。在DecoceJob的run方法中,会依次从ResourceCacheGenerator和DataCacheGenerator中去取缓存数据,当这两者都取不到的情况下,会交给SourceGenerator加载网络图片或者本地资源。resource资源和data资源都是磁盘缓存中的资源。

先看下 ResourceCacheGenerator.startNext

@Override
  public boolean startNext() {
    // list里面只有一个GlideUrl对象
    List sourceIds = helper.getCacheKeys();
    if (sourceIds.isEmpty()) {
      return false;
    }
    // 获得了三个可以到达的registeredResourceClasses
    // GifDrawable、Bitmap、BitmapDrawable
    List> resourceClasses = helper.getRegisteredResourceClasses();
    if (resourceClasses.isEmpty()) {
      if (File.class.equals(helper.getTranscodeClass())) {
        return false;
      }
      throw new IllegalStateException(
         "Failed to find any load path from " + helper.getModelClass() + " to "
             + helper.getTranscodeClass());
    }
    
    // 遍历sourceIds中的每一个key、resourceClasses中每一个class,以及其他的一些值组成key
    // 尝试在磁盘缓存中以key找到缓存文件
    while (modelLoaders == null || !hasNextModelLoader()) {
      resourceClassIndex++;
      if (resourceClassIndex >= resourceClasses.size()) {
        sourceIdIndex++;
        if (sourceIdIndex >= sourceIds.size()) {
          return false;
        }
        resourceClassIndex = 0;
      }

      Key sourceId = sourceIds.get(sourceIdIndex);
      Class resourceClass = resourceClasses.get(resourceClassIndex);
      Transformation transformation = helper.getTransformation(resourceClass);
      // PMD.AvoidInstantiatingObjectsInLoops Each iteration is comparatively expensive anyway,
      // we only run until the first one succeeds, the loop runs for only a limited
      // number of iterations on the order of 10-20 in the worst case.
      
      // 构造key
      currentKey =
          new ResourceCacheKey(// NOPMD AvoidInstantiatingObjectsInLoops
              helper.getArrayPool(),
              sourceId,
              helper.getSignature(),
              helper.getWidth(),
              helper.getHeight(),
              transformation,
              resourceClass,
              helper.getOptions());
      // 查找缓存文件
      cacheFile = helper.getDiskCache().get(currentKey);
      
      // 如果找到了缓存文件,循环条件则会为false,退出循环
      if (cacheFile != null) {
        sourceKey = sourceId;
        // 1. 找出注入时以File.class为modelClass的注入代码
        // 2. 调用所有注入的factory.build方法得到ModelLoader
        // 3 .过滤掉不可能处理model的ModelLoader
        // 此时的modelLoaders值为:
        // [ByteBufferFileLoader, FileLoader, FileLoader, UnitModelLoader]
        modelLoaders = helper.getModelLoaders(cacheFile);
        modelLoaderIndex = 0;
      }
    }

    // 如果找到了缓存文件,hasNextModelLoader()方法则会为true,可以执行循环
    // 没有找到缓存文件,则不会进入循环,会直接返回false
    loadData = null;
    boolean started = false;
    while (!started && hasNextModelLoader()) {
      ModelLoader modelLoader = modelLoaders.get(modelLoaderIndex++);
      // 在循环中会依次判断某个ModelLoader能不能加载此文件
      loadData = modelLoader.buildLoadData(cacheFile,
          helper.getWidth(), helper.getHeight(), helper.getOptions());
      if (loadData != null && helper.hasLoadPath(loadData.fetcher.getDataClass())) {
        started = true;
        
        // 如果某个ModelLoader可以,那么就调用其fetcher进行加载数据
        // 加载成功或失败会通知自身
        loadData.fetcher.loadData(helper.getPriority(), this);
      }
    }

    return started;
  }

该方法的相关注释代码里都有标明。找缓存时key的类型为ResourceCacheKey,我们先来看下ResourceCacheKey的构成

currentKey =
          new ResourceCacheKey(// NOPMD AvoidInstantiatingObjectsInLoops
              helper.getArrayPool(),
              sourceId,
              helper.getSignature(),
              helper.getWidth(),
              helper.getHeight(),
              transformation,
              resourceClass,
              helper.getOptions());
ResourceCacheKey(
      ArrayPool arrayPool,
      Key sourceKey,
      Key signature,
      int width,
      int height,
      Transformation appliedTransformation,
      Class decodedResourceClass,
      Options options)
  • arrayPool
    默认值是LruArrayPool,不参与key的equals方法

  • sourceKey
    如果请求的是URL,此处就是GlideUrl(GlideUrl implements Key)

  • signature
    BaseRequestOptions的成员变量,默认会是EmptySignature.obtain()
    在加载本地resource资源时会变成ApplicationVersionSignature.obtain(context)

  • width、height
    如果没有指定override(int size),那么将得到view的size

  • appliedTransformation
    默认会根据ImageView的scaleType设置对应的BitmapTransformation;
    如果指定了transform,那么就会是指定的值

  • decodedResourceClass
    可以被编码成的资源类型,如BitmapDrawable等

  • options
    如果没有设置过transform,此处会根据ImageView的scaleType默认指定一个option

在ResourceCacheKey中,arrayPool并没有参与equals方法。

生成ResourceCacheKey之后会根据key去磁盘缓存中查找cacheFile = helper.getDiskCache().get(currentKey);
helper.getDiskCache()返回DiskCache接口,它的实现类是DiskLruCacheWrapper,看下DiskLruCacheWrapper.get方法

  @Override
  public File get(Key key) {
    String safeKey = safeKeyGenerator.getSafeKey(key);
    ...
    File result = null;
    try {
      final DiskLruCache.Value value = getDiskCache().get(safeKey);
      if (value != null) {
        result = value.getFile(0);
      }
    } catch (IOException e) {
      ...
    }
    return result;
  }

这里调用SafeKeyGenerator生成了一个String类型的SafeKey,实际上就是对原始key中每个字段都使用SHA-256加密,然后将得到的字节数组转换为16进制的字符串。生成SafeKey后,接着根据SafeKey去DiskCache里面找对应的缓存文件,然后返回文件。

回到ResourceCacheGenerator.startNext方法中,如果找到了缓存会调用loadData.fetcher.loadData(helper.getPriority(), this);这里的 fetcher 是 ByteBufferFetcher,ByteBufferFetcher的loadData方法中最终会执行callback.onDataReady(result)这里callback是ResourceCacheGenerator

  public void onDataReady(Object data) {
    cb.onDataFetcherReady(sourceKey, data, loadData.fetcher, DataSource.RESOURCE_DISK_CACHE,
        currentKey);
  }

ResourceCacheGenerator的onDataReady方法又会回调DecodeJob的onDataFetcherReady方法进行后续的解码操作。

如果ResourceCacheGenerator没有找到缓存,就会交给DataCacheGenerator继续查找缓存。该类大体流程和ResourceCacheGenerator一样,有点不同的是,DataCacheGenerator的构造器有两个构造器,其中的DataCacheGenerator(List, DecodeHelper, FetcherReadyCallback)构造器是给SourceGenerator准备的。因为如果没有磁盘缓存,那么从源头加载后,肯定需要进行磁盘缓存操作的。所以,SourceGenerator会将加载后的资源保存到磁盘中,然后转交给DataCacheGenerator从磁盘中取出交给ImageView展示。

看下DataCacheGenerator.startNext

public boolean startNext() {
    while (modelLoaders == null || !hasNextModelLoader()) {
      sourceIdIndex++;
      if (sourceIdIndex >= cacheKeys.size()) {
        return false;
      }

      Key sourceId = cacheKeys.get(sourceIdIndex);
      ...
      Key originalKey = new DataCacheKey(sourceId, helper.getSignature());
      cacheFile = helper.getDiskCache().get(originalKey);
      ...
    while (!started && hasNextModelLoader()) {
      ModelLoader modelLoader = modelLoaders.get(modelLoaderIndex++);
      loadData =
          modelLoader.buildLoadData(cacheFile, helper.getWidth(), helper.getHeight(),
              helper.getOptions());
      if (loadData != null && helper.hasLoadPath(loadData.fetcher.getDataClass())) {
        started = true;
        loadData.fetcher.loadData(helper.getPriority(), this);
      }
    }
    return started;
  }

这里的originalKey是DataCacheKey类型的,DataCacheKey构造方法如下

DataCacheKey(Key sourceKey, Key signature)

这里的sourceKey和signature与ResourceCacheKey中的两个变量一致,从这里就可以看出:DataCache缓存的是原始的数据,ResourceCache缓存的是是被解码、转换后的数据。

如果DataCacheGenerator没有取到缓存,那么会交给SourceGenerator从源头加载。看下SourceGenerator的startNext方法

  @Override
  public boolean startNext() {
  
    // 首次运行dataToCache为null
    if (dataToCache != null) {
      Object data = dataToCache;
      dataToCache = null;
      cacheData(data);
    }

    // 首次运行sourceCacheGenerator为null
    if (sourceCacheGenerator != null && sourceCacheGenerator.startNext()) {
      return true;
    }
    sourceCacheGenerator = null;

    loadData = null;
    boolean started = false;
    while (!started && hasNextModelLoader()) {
      loadData = helper.getLoadData().get(loadDataListIndex++);
      if (loadData != null
          && (helper.getDiskCacheStrategy().isDataCacheable(loadData.fetcher.getDataSource())
          || helper.hasLoadPath(loadData.fetcher.getDataClass()))) {
        started = true;
        loadData.fetcher.loadData(helper.getPriority(), this);
      }
    }
    return started;
  }

加载成功后依然会回调SourceGenerator的onDataReady方法

  @Override
  public void onDataReady(Object data) {
    DiskCacheStrategy diskCacheStrategy = helper.getDiskCacheStrategy();
    if (data != null && diskCacheStrategy.isDataCacheable(loadData.fetcher.getDataSource())) {
      dataToCache = data;
      // cb 为 DecodeJob
      cb.reschedule();
    } else {
      // cb 为 DecodeJob
      cb.onDataFetcherReady(loadData.sourceKey, data, loadData.fetcher,
          loadData.fetcher.getDataSource(), originalKey);
    }
  }

先判断获取到的数据是否需要进行磁盘缓存,如果需要磁盘缓存,则经过DecodeJob、EngineJob的调度,重新调用SourceGenerator.startNext方法,此时dataToCache已经被赋值,则会调用cacheData(data);进行磁盘缓存的写入,并转交给DataCacheGenerator完成后续的处理;否则就通知DecodeJob已经加载成功。

先看下SourceGenerator的startNext方法中调用的SourceGenerator.cacheData(data)

private void cacheData(Object dataToCache) {
    long startTime = LogTime.getLogTime();
    try {
      Encoder encoder = helper.getSourceEncoder(dataToCache);
      DataCacheWriter writer =
          new DataCacheWriter<>(encoder, dataToCache, helper.getOptions());
      originalKey = new DataCacheKey(loadData.sourceKey, helper.getSignature());
      helper.getDiskCache().put(originalKey, writer);
      ...
    } finally {
      loadData.fetcher.cleanup();
    }

    sourceCacheGenerator =
        new DataCacheGenerator(Collections.singletonList(loadData.sourceKey), helper, this);
  }
 
 

cacheData方法先构建了一个DataCacheKey将data写入了磁盘,然后new了一个DataCacheGenerator赋值给sourceCacheGenerator。回到startNext继续向下执行,此时sourceCacheGenerator不为空,就调用其startNext()方法从磁盘中加载刚写入磁盘的数据,并返回true让DecodeJob停止尝试获取数据。此时,从磁盘缓存中读取数据的逻辑已经完成,接下来是写磁盘缓存。

假如SourceGenerator的onDataReady方法中的磁盘缓存策略不可用,则会回调DecodeJob.onDataFetcherReady方法

  // DecodeJob
  @Override
  public void onDataFetcherReady(Key sourceKey, Object data, DataFetcher fetcher,
      DataSource dataSource, Key attemptedKey) {
    this.currentSourceKey = sourceKey;
    this.currentData = data;
    this.currentFetcher = fetcher;
    this.currentDataSource = dataSource;
    this.currentAttemptingKey = attemptedKey;
    if (Thread.currentThread() != currentThread) {
      runReason = RunReason.DECODE_DATA;
      callback.reschedule(this);
    } else {
      GlideTrace.beginSection("DecodeJob.decodeFromRetrievedData");
      try {
        decodeFromRetrievedData();
      } finally {
        GlideTrace.endSection();
      }
    }
  }
  private void decodeFromRetrievedData() {
    ...
    Resource resource = null;
    try {
      resource = decodeFromData(currentFetcher, currentData, currentDataSource);
    } catch (GlideException e) {
      e.setLoggingDetails(currentAttemptingKey, currentDataSource);
      throwables.add(e);
    }
    if (resource != null) {
      notifyEncodeAndRelease(resource, currentDataSource);
    } else {
      runGenerators();
    }
  }

decodeFromRetrievedData();后续的方法调用链在之前的文章中分析过,主要做的事情就是:将原始的data数据转变为可以供ImageView显示的resource数据并将其显示在ImageView上。

将原始的data数据转变为resource数据后,会调用DecodeJob.onResourceDecoded(dataSource, decoded)

  @Synthetic
  @NonNull
   Resource onResourceDecoded(DataSource dataSource,
      @NonNull Resource decoded) {
    @SuppressWarnings("unchecked")
    Class resourceSubClass = (Class) decoded.get().getClass();
    Transformation appliedTransformation = null;
    Resource transformed = decoded;
    
    // 不是 resource cache时要transform
    if (dataSource != DataSource.RESOURCE_DISK_CACHE) {
      appliedTransformation = decodeHelper.getTransformation(resourceSubClass);
      transformed = appliedTransformation.transform(glideContext, decoded, width, height);
    }
    // TODO: Make this the responsibility of the Transformation.
    if (!decoded.equals(transformed)) {
      decoded.recycle();
    }

    final EncodeStrategy encodeStrategy;
    final ResourceEncoder encoder;
    if (decodeHelper.isResourceEncoderAvailable(transformed)) {
      encoder = decodeHelper.getResultEncoder(transformed);
      encodeStrategy = encoder.getEncodeStrategy(options);
    } else {
      encoder = null;
      encodeStrategy = EncodeStrategy.NONE;
    }

    Resource result = transformed;
    boolean isFromAlternateCacheKey = !decodeHelper.isSourceKey(currentSourceKey);
    if (diskCacheStrategy.isResourceCacheable(isFromAlternateCacheKey, dataSource,
        encodeStrategy)) {
      if (encoder == null) {
        throw new Registry.NoResultEncoderAvailableException(transformed.get().getClass());
      }
      final Key key;
      switch (encodeStrategy) {
        case SOURCE:
          key = new DataCacheKey(currentSourceKey, signature);
          break;
        case TRANSFORMED:
          key =
              new ResourceCacheKey(
                  decodeHelper.getArrayPool(),
                  currentSourceKey,
                  signature,
                  width,
                  height,
                  appliedTransformation,
                  resourceSubClass,
                  options);
          break;
        default:
          throw new IllegalArgumentException("Unknown strategy: " + encodeStrategy);
      }

      LockedResource lockedResult = LockedResource.obtain(transformed);
      deferredEncodeManager.init(key, encoder, lockedResult);
      result = lockedResult;
    }
    return result;
  }

然后是此过程中的磁盘缓存过程,影响的因素有encodeStrategy、DiskCacheStrategy.isResourceCacheable。encodeStrategy根据resource数据的类型来判断,如果是Bitmap或BitmapDrawable,那么就是TRANSFORMED;如果是GifDrawable,那么就是SOURCE。磁盘缓存策略默认是DiskCacheStrategy.AUTOMATIC。源码如下:

    public static final DiskCacheStrategy AUTOMATIC = new DiskCacheStrategy() {
        public boolean isDataCacheable(DataSource dataSource) {
            return dataSource == DataSource.REMOTE;
        }

        public boolean isResourceCacheable(boolean isFromAlternateCacheKey, DataSource dataSource, EncodeStrategy encodeStrategy) {
            return (isFromAlternateCacheKey && dataSource == DataSource.DATA_DISK_CACHE || dataSource == DataSource.LOCAL) && encodeStrategy == EncodeStrategy.TRANSFORMED;
        }

        public boolean decodeCachedResource() {
            return true;
        }

        public boolean decodeCachedData() {
            return true;
        }
    };

只有dataSource为DataSource.LOCAL且encodeStrategy为EncodeStrategy.TRANSFORMED时,才允许缓存。也就是只有本地的resource数据为Bitmap或BitmapDrawable的资源才可以缓存。

在DecodeJob.onResourceDecoded中会调用deferredEncodeManager.init(key, encoder, lockedResult);去初始化deferredEncodeManager。

在DecodeJob的decodeFromRetrievedData();中拿到resource数据后会调用notifyEncodeAndRelease(resource, currentDataSource)利用deferredEncodeManager对象进行磁盘缓存的写入

private void notifyEncodeAndRelease(Resource resource, DataSource dataSource) {
    ...

    // 通知回调,资源已经就绪
    notifyComplete(result, dataSource);

    stage = Stage.ENCODE;
    try {
      if (deferredEncodeManager.hasResourceToEncode()) {
        deferredEncodeManager.encode(diskCacheProvider, options);
      }
    } finally {
      if (lockedResource != null) {
        lockedResource.unlock();
      }
    }
    
    onEncodeComplete();
  }

deferredEncodeManager.encode行磁盘缓存的写入

// DecodeJob
private static class DeferredEncodeManager {
  private Key key;
  private ResourceEncoder encoder;
  private LockedResource toEncode;

  @Synthetic
  DeferredEncodeManager() { }

  // We just need the encoder and resource type to match, which this will enforce.
  @SuppressWarnings("unchecked")
   void init(Key key, ResourceEncoder encoder, LockedResource toEncode) {
    this.key = key;
    this.encoder = (ResourceEncoder) encoder;
    this.toEncode = (LockedResource) toEncode;
  }

  void encode(DiskCacheProvider diskCacheProvider, Options options) {
    GlideTrace.beginSection("DecodeJob.encode");
    try {
      // 存入磁盘缓存
      diskCacheProvider.getDiskCache().put(key,
          new DataCacheWriter<>(encoder, toEncode, options));
    } finally {
      toEncode.unlock();
      GlideTrace.endSection();
    }
  }

  boolean hasResourceToEncode() {
    return toEncode != null;
  }

  void clear() {
    key = null;
    encoder = null;
    toEncode = null;
  }
}

diskCacheProvider.getDiskCache()获取到DiskLruCacheWrapper,并调用DiskLruCacheWrapper的put写入。DiskLruCacheWrapper在写入的时候会使用到写锁DiskCacheWriteLocker,锁对象由对象池WriteLockPool创建,写锁WriteLock实现是一个不公平锁ReentrantLock。
在缓存写入前,会判断key对应的value存不存在,若存在则不写入。缓存的真正写入会由DataCacheWriter交给ByteBufferEncoderStreamEncoder两个具体类来写入,前者负责将ByteBuffer写入到文件,后者负责将InputStream写入到文件。

到目前为止,磁盘缓存的读写流程都已分析完成。

2.5 内存缓存:ActiveResource与MemoryCache读取

回到DecodeJob.notifyEncodeAndRelease方法中,经过notifyComplete、EngineJob.onResourceReady、notifyCallbacksOfResult方法中。
在该方法中一方面会将原始的resource包装成一个EngineResource,然后通过回调传给Engine.onEngineJobComplete

  @Override
  public synchronized void onEngineJobComplete(
      EngineJob engineJob, Key key, EngineResource resource) {
    
    // 设置资源的回调为自己,这样在资源释放时会通知自己的回调方法
    if (resource != null) {
      resource.setResourceListener(key, this);

      // 将资源放入activeResources中,资源变为active状态
      if (resource.isCacheable()) {
        activeResources.activate(key, resource);
      }
    }

    // 将engineJob从Jobs中移除
    jobs.removeIfCurrent(key, engineJob);
  }

在这里会将资源放入activeResources中,资源变为active状态。后面会使用Executors.mainThreadExecutor()调用SingleRequest.onResourceReady回调进行资源的显示。在触发回调前后各有一个地方会对engineResource进行acquire()和release()操作,这两个操作分别发生在notifyCallbacksOfResult()方法的incrementPendingCallbacks、decrementPendingCallbacks()调用中

@Synthetic
void notifyCallbacksOfResult() {
  ResourceCallbacksAndExecutors copy;
  Key localKey;
  EngineResource localResource;
  synchronized (this) {
    ...
    engineResource = engineResourceFactory.build(resource, isCacheable);
    ...
    hasResource = true;
    copy = cbs.copy();
    incrementPendingCallbacks(copy.size() + 1);

    localKey = key;
    localResource = engineResource;
  }

  listener.onEngineJobComplete(this, localKey, localResource);

  for (final ResourceCallbackAndExecutor entry : copy) {
    entry.executor.execute(new CallResourceReady(entry.cb));
  }
  decrementPendingCallbacks();
}

synchronized void incrementPendingCallbacks(int count) {
  ...
  if (pendingCallbacks.getAndAdd(count) == 0 && engineResource != null) {
    engineResource.acquire();
  }
}

synchronized void decrementPendingCallbacks() {
  ...
  int decremented = pendingCallbacks.decrementAndGet();
  if (decremented == 0) {
    if (engineResource != null) {
      engineResource.release();
    }

    release();
  }
}

private class CallResourceReady implements Runnable {

  private final ResourceCallback cb;

  CallResourceReady(ResourceCallback cb) {
    this.cb = cb;
  }

  @Override
  public void run() {
    synchronized (EngineJob.this) {
      if (cbs.contains(cb)) {
        // Acquire for this particular callback.
        engineResource.acquire();
        callCallbackOnResourceReady(cb);
        removeCallback(cb);
      }
      decrementPendingCallbacks();
    }
  }
}

CallResourceReady的run方法中也会调用engineResource.acquire(),上面的代码调用结束后,engineResource的引用计数为1。engineResource的引用计数会在RequestManager.onDestory方法中最终调用SingleRequest.clear()方法,SingleRequest.clear()内部调用releaseResource()、Engine.release 进行释放,这样引用计数就变为0。引用计数就变为0后会通知Engine将此资源从active状态变成memory cache状态。如果我们再次加载资源时可以从memory cache中加载,那么资源又会从memory cache状态变成active状态。也就是说,在资源第一次显示后,我们关闭页面,资源会由active变成memory cache;然后我们再次进入页面,加载时会命中memory cache,从而又变成active状态。

2.6 总结

四种缓存状态
  1. memory cache和disk cache在Glide创建的时候也被创建。

  2. disk cache默认会创建一个250M的缓存目录(/data/data/{package}/cache/image_manager_disk_cache/)。

  3. ActiveResources在Engine的构造器中被创建,内部维护了一个 Map类型的activeEngineResources用来存储包裹EngineResource的ResourceWeakReference,ResourceWeakReference构造器中会传入一个ReferenceQueue,在ActiveResources的构造器中会启动一个后台线程,在该线程中会循环从activeEngineResources清除ReferenceQueue中的将要被GC的Resource。

  4. ActiveResources被引用后,其内部的引用计数会+1,当被释放后,其内部的引用计数会-1,当引用计数为0,则表示该ActiveResources不再被引用,会将资源放入LruResourceCache中。

  5. 首先从ActiveResources中获取缓存资源,获取不到再从LruResourceCache中查找。第一次没有缓存,会从网络下载图片成功后会存入磁盘缓存,然后再从磁盘缓存获取资源存入ActiveResources中并将其交给ImageView展示。

  6. 缓存查找中涉及的三个类:ResourceCacheGenerator、DataCacheGenerator、SourceGenerator。按照先后关系依次调用他们的startNext()方法查找缓存,ResourceCacheGenerator获取downsample、transform后的资源文件的缓存文件;DataCacheGenerator获取原始的没有修改过的资源文件的缓存文件;SourceGenerator获取原始源数据。

  7. ActiveResources引用计数就变为0后会通知Engine将此资源从active状态变成memory cache状态。如果我们再次加载资源时可以从memory cache中加载,那么资源又会从memory cache状态变成active状态。也就是说,在资源第一次显示后,我们关闭页面,资源会由active变成memory cache;然后我们再次进入页面,加载时会命中memory cache,从而又变成active状态。

  8. 之所以需要ActiveResources,因为它用弱引用包装资源,随时可能被回收,memory的强引用频繁读写可能造成内存激增频繁GC,而造成内存抖动。资源在使用过程中保存在ActiveResources中,而ActiveResources是弱引用,随时被系统回收,不会造成内存过多使用和泄漏。

3 Bitmap复用池复用源码流程

在Glide源码分析-网络图片加载主流程分析文章中分析过Glide加载图片主要流程源码,在ByteBufferBitmapDecoder.decode方法中,先将ByteBuffer转换成InputStream,然后在调用Downsampler.decode方法进行解码,代码如下:

  // ByteBufferBitmapDecoder
  @Override
  public Resource decode(@NonNull ByteBuffer source, int width, int height,
      @NonNull Options options)
      throws IOException {
    InputStream is = ByteBufferUtil.toStream(source);
    return downsampler.decode(is, width, height, options);
  }

继续跟进Downsampler.decode方法

public Resource decode(InputStream is, int requestedWidth, int requestedHeight,
      Options options, DecodeCallbacks callbacks) throws IOException {
    Preconditions.checkArgument(is.markSupported(), "You must provide an InputStream that supports"
        + " mark()");

    byte[] bytesForOptions = byteArrayPool.get(ArrayPool.STANDARD_BUFFER_SIZE_BYTES, byte[].class);
    
    // getDefaultOptions()中将inMutable设置为true
    BitmapFactory.Options bitmapFactoryOptions = getDefaultOptions();
    
    // inTempStorage是一个bitmap解析的参数,带入一个buffer,创建临时文件,将图片存储的临时缓存空间
    bitmapFactoryOptions.inTempStorage = bytesForOptions;

    DecodeFormat decodeFormat = options.get(DECODE_FORMAT);
    DownsampleStrategy downsampleStrategy = options.get(DownsampleStrategy.OPTION);
    boolean fixBitmapToRequestedDimensions = options.get(FIX_BITMAP_SIZE_TO_REQUESTED_DIMENSIONS);
    boolean isHardwareConfigAllowed =
      options.get(ALLOW_HARDWARE_CONFIG) != null && options.get(ALLOW_HARDWARE_CONFIG);

    try {
      Bitmap result = decodeFromWrappedStreams(is, bitmapFactoryOptions,
          downsampleStrategy, decodeFormat, isHardwareConfigAllowed, requestedWidth,
          requestedHeight, fixBitmapToRequestedDimensions, callbacks);
      return BitmapResource.obtain(result, bitmapPool);
    } finally {
      releaseOptions(bitmapFactoryOptions);
      byteArrayPool.put(bytesForOptions);
    }
  }

在getDefaultOptions()方法中会将inMutable设置为true,代码如下:

  private static synchronized BitmapFactory.Options getDefaultOptions() {
    BitmapFactory.Options decodeBitmapOptions;
    synchronized (OPTIONS_QUEUE) {
      decodeBitmapOptions = OPTIONS_QUEUE.poll();
    }
    if (decodeBitmapOptions == null) {
      decodeBitmapOptions = new BitmapFactory.Options();
      resetOptions(decodeBitmapOptions);
    }

    return decodeBitmapOptions;
  }
  
    private static void resetOptions(BitmapFactory.Options decodeBitmapOptions) {
    decodeBitmapOptions.inTempStorage = null;
    decodeBitmapOptions.inDither = false;
    decodeBitmapOptions.inScaled = false;
    decodeBitmapOptions.inSampleSize = 1;
    decodeBitmapOptions.inPreferredConfig = null;
    decodeBitmapOptions.inJustDecodeBounds = false;
    decodeBitmapOptions.inDensity = 0;
    decodeBitmapOptions.inTargetDensity = 0;
    decodeBitmapOptions.outWidth = 0;
    decodeBitmapOptions.outHeight = 0;
    decodeBitmapOptions.outMimeType = null;
    decodeBitmapOptions.inBitmap = null;
    decodeBitmapOptions.inMutable = true;
  }

回到Downsampler.decode方法中,继续调用decodeFromWrappedStreams方法返回Bitmap,跟进decodeFromWrappedStreams

// DownSampler
 private Bitmap decodeFromWrappedStreams(InputStream is,
      BitmapFactory.Options options, DownsampleStrategy downsampleStrategy,
      DecodeFormat decodeFormat, boolean isHardwareConfigAllowed, int requestedWidth,
      int requestedHeight, boolean fixBitmapToRequestedDimensions,
      DecodeCallbacks callbacks) throws IOException {
    long startTime = LogTime.getLogTime();

    // 计算原始大小
    int[] sourceDimensions = getDimensions(is, options, callbacks, bitmapPool);
    int sourceWidth = sourceDimensions[0];
    int sourceHeight = sourceDimensions[1];
    String sourceMimeType = options.outMimeType;

    ...
    
    // 计算方向
    int orientation = ImageHeaderParserUtils.getOrientation(parsers, is, byteArrayPool);
    int degreesToRotate = TransformationUtils.getExifOrientationDegrees(orientation);
    boolean isExifOrientationRequired = TransformationUtils.isExifOrientationRequired(orientation);

    // 计算目标大小
    int targetWidth = requestedWidth == Target.SIZE_ORIGINAL ? sourceWidth : requestedWidth;
    int targetHeight = requestedHeight == Target.SIZE_ORIGINAL ? sourceHeight : requestedHeight;
    // 计算类型
    ImageType imageType = ImageHeaderParserUtils.getType(parsers, is, byteArrayPool);

    ...
       
     // 使用复用池
    if ((options.inSampleSize == 1 || isKitKatOrGreater) && shouldUsePool(imageType)) {
      int expectedWidth;
      int expectedHeight;
      
      ...

      if (expectedWidth > 0 && expectedHeight > 0) {
        setInBitmap(options, bitmapPool, expectedWidth, expectedHeight);
      }
    }
    Bitmap downsampled = decodeStream(is, options, callbacks, bitmapPool);
    callbacks.onDecodeComplete(bitmapPool, downsampled);

    ...
    
    return rotated;
  }
  
  private static void setInBitmap(
      BitmapFactory.Options options, BitmapPool bitmapPool, int width, int height) {
    @Nullable Bitmap.Config expectedConfig = null;
     ...

    options.inBitmap = bitmapPool.getDirty(width, height, expectedConfig);
  }

setInBitmap方法里面的bitmapPool就是LruBitmapPool,在Glide构造器里面被初始化,LruBitmapPool 就是Glide提供Bitmap复用池,真正的实现类是LruPoolStrategy

public class LruBitmapPool implements BitmapPool {

private final LruPoolStrategy strategy;

...

public synchronized void put(Bitmap bitmap) {
    if (bitmap == null) {
      throw new NullPointerException("Bitmap must not be null");
    }
    if (bitmap.isRecycled()) {
      throw new IllegalStateException("Cannot pool recycled bitmap");
    }
    if (!bitmap.isMutable() || strategy.getSize(bitmap) > maxSize
        || !allowedConfigs.contains(bitmap.getConfig())) {
      bitmap.recycle();
      return;
    }

    final int size = strategy.getSize(bitmap);
    strategy.put(bitmap);
    tracker.add(bitmap);

    puts++;
    currentSize += size;
    dump();
    evict();
  }

  public Bitmap get(int width, int height, Bitmap.Config config) {
    Bitmap result = getDirtyOrNull(width, height, config);
    if (result != null) {
      result.eraseColor(Color.TRANSPARENT);
    } else {
      result = createBitmap(width, height, config);
    }

    return result;
    }
}

看下LruBitmapPool.getDirty方法

// LruBitmapPool
  public Bitmap getDirty(int width, int height, Bitmap.Config config) {
    // 优先获取
    Bitmap result = getDirtyOrNull(width, height, config);
    if (result == null) { // 若没有,新建一个bitmap
      result = createBitmap(width, height, config);
    }
    return result;
  }

如果可以使用bitmap池,就会调用bitmapPool的getDirty(),最后赋值给inBitmap,总结一下:setInBitmap方法主要就是从LruBitmapPool中获取可以被复用的Bitmap返回,并赋值给BitmapFactory.Options的inBitmap。

那么可以被复用的Bitmap是什么时候加入Bitmap复用池呢?当Resource资源没有被引用并且不可被缓存的时候,会调用recycle()方法进行回收,在BitmapDrawableResource的recycle()方法被调用的时候,会将当前BitmapDrawableResource的bitmap放入复用池,代码如下:

  // BitmapDrawableResource
  @Override
  public void recycle() {
    bitmapPool.put(drawable.getBitmap());
  }

LruBitmapPool内部利用了Lru算法,每次操作都自动检测是否删除多余的缓存

// LruBitmapPool
private void evict() {
    trimToSize(maxSize);
  }

  private synchronized void trimToSize(long size) {
    while (currentSize > size) {
      final Bitmap removed = strategy.removeLast();
      // TODO: This shouldn't ever happen, see #331.
      if (removed == null) {
        if (Log.isLoggable(TAG, Log.WARN)) {
          Log.w(TAG, "Size mismatch, resetting");
          dumpUnchecked();
        }
        currentSize = 0;
        return;
      }
      tracker.remove(removed);
      currentSize -= strategy.getSize(removed);
      evictions++;
      if (Log.isLoggable(TAG, Log.DEBUG)) {
        Log.d(TAG, "Evicting bitmap=" + strategy.logBitmap(removed));
      }
      dump();
      removed.recycle();
    }
  }

再来看看Bitmap复用池对Bitmap具体的存取逻辑的类LruPoolStrategy,在LruBitmapPool的put方法中会调用LruPoolStrategy的put方法,在LruBitmapPool的get方法中会调用getDirtyOrNull方法进而调用LruPoolStrategy的get方法,LruPoolStrategy时一个接口,在LruBitmapPool中为LruPoolStrategy类型的全局变量strategy其赋值的地方在LruBitmapPool构造器中

  LruBitmapPool(long maxSize, LruPoolStrategy strategy, Set allowedConfigs) {
    this.initialMaxSize = maxSize;
    this.maxSize = maxSize;
    this.strategy = strategy;
    this.allowedConfigs = allowedConfigs;
    this.tracker = new NullBitmapTracker();
  }
  
  public LruBitmapPool(long maxSize) {
    this(maxSize, getDefaultStrategy(), getDefaultAllowedConfigs());
  }
  
  private static LruPoolStrategy getDefaultStrategy() {
    final LruPoolStrategy strategy;
    if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
      strategy = new SizeConfigStrategy();
    } else {
      strategy = new AttributeStrategy();
    }
    return strategy;
  }

当sdk版本在19之上,会创建SizeConfigStrategy实例并赋值给strategy,那么继续看下SizeConfigStrategy的put和get方法相关代码

  public class SizeConfigStrategy implements LruPoolStrategy {
  private static final int MAX_SIZE_MULTIPLE = 8;
  private final KeyPool keyPool = new KeyPool();
  private final GroupedLinkedMap groupedMap = new GroupedLinkedMap<>();
  private final Map> sortedSizes = new HashMap<>();
  
  // 存入
  public void put(Bitmap bitmap) {
    int size = Util.getBitmapByteSize(bitmap);
    Key key = keyPool.get(size, bitmap.getConfig());

    groupedMap.put(key, bitmap);

    NavigableMap sizes = getSizesForConfig(bitmap.getConfig());
    Integer current = sizes.get(key.size);
    sizes.put(key.size, current == null ? 1 : current + 1);
  }

  // 取出
  public Bitmap get(int width, int height, Bitmap.Config config) {
    int size = Util.getBitmapByteSize(width, height, config);
    // 查找出最合适的bitmap
    Key bestKey = findBestKey(size, config);
    // 取出
    Bitmap result = groupedMap.get(bestKey);
    if (result != null) {
      // Decrement must be called before reconfigure.
      decrementBitmapOfSize(bestKey.size, result);
      result.reconfigure(width, height,
          result.getConfig() != null ? result.getConfig() : Bitmap.Config.ARGB_8888);
    }
    return result;
  }
  
}

findBestKey()方法就是通过对size进行匹配,找出最合适size的Bitmap的key,上面有提到过:在Android 4.4之后复用Bitmap有一个限制,就是被复用的Bitmap尺寸要大于新的Bitmap尺寸,findBestKey()方法就是实现这个逻辑

  private Key findBestKey(int size, Bitmap.Config config) {
    Key result = keyPool.get(size, config);
    for (Bitmap.Config possibleConfig : getInConfigs(config)) {
      NavigableMap sizesForPossibleConfig = getSizesForConfig(possibleConfig);
      
      // 返回大于或等于指定size的最小的符合要求的size
      Integer possibleSize = sizesForPossibleConfig.ceilingKey(size);
      if (possibleSize != null && possibleSize <= size * MAX_SIZE_MULTIPLE) {
        if (possibleSize != size
            || (possibleConfig == null ? config != null : !possibleConfig.equals(config))) {
          keyPool.offer(result);
          result = keyPool.get(possibleSize, possibleConfig);
        }
        break;
      }
    }
    return result;
  }

总结

  • Glide中使用Bitmap复用池来减少内存抖动
  • Bitmap复用池实现类是LruBitmapPool,通过LRU算法来管理Bitmap复用池
  • 具体的存储和取出符合要求的可被复用的Bitmap的逻辑在SizeConfigStrategy中,主要是通过NavigableMap数据结构的ceilingKey(K key)方法取出大于或等于新的Bitmap的size的最优size对应的key,进而取出最优的待复用的Bitmap

参考链接
https://muyangmin.github.io/glide-docs-cn/doc/caching.html

你可能感兴趣的:(Glide源码分析-缓存与复用机制)