随着企业业务的发展,单一的营收指标不足以衡量和检测业务的好坏,因此需要更为立体的指标体系,监测业务状况,为业务的发展提供更好的指引。
指标体系是将零散单点的具有相互联系的的指标,系统化的组织起来。通过单点看全局,通过全局解决单点的问题。它主要有指标和体系两部分组成。
指标主要分为:结果型指标和过程型指标
生命周期主要包括定义、生产、消费和下线四个阶段。针对整个生命周期要持续做的指标运维,质量保证,同时为了提高指标数据的复用度,降低用户使用成本,需要做对应的数据运营工作。流程图如下:
指标体系主要结合用户的业务场景来进行使用。多个不同的指标和维度可以组合起来进行业务的综合分析,用户可以通过指标的变化看到整体业务的变化,并能够快速的发现问题并定位问题。常用的场景是决策分析的场景。通过数据看清楚业务现状进行战略决策支持,另一种是运营分析场景。无论是做用户运营、产品运营还是活动运营都需要各类指标数据的支撑区看清楚问题、分析问题和解决问题。
- 衡量业务发展质量
指标体系可以反映业务客观事实,看清楚业务发展现状。内部用户可以通过指标对业务质量进行衡量,把控业务发展情况,针对发现的业务问题聚焦解决,促进业务有序增长。
- 建立指标因果关系
主要明确结果型指标和过程型指标的关系,通过结果型指标回溯过程型指标,找到解决问题的核心元原因。
- 指导用户分析工作
目的是建立产品评估体系、活动效果评估体系和智能运营分析体系
指标体系建设和常用方法是通过场景化进行指标体系的搭建,以用户的视角量化思考,自上而下业务驱动指标体系建设。所以,要在特定场景下做好指标体系,首先要选好指标,然后用科学的方法搭建指标体系。
选指标的常用方法是指标分级法和 OSM模型。
指标分级 主要是指标内容纵向的思考。根据企业的战略目标、组合和业务过程进行自上而下的指标分级。对指标进行层层剖析。主要分为三级:T1,T2,T3。
- T1指标 :公司级的战略层面指标
用户衡量公司整体目标达成情况的指标。主要是决策类指标,T1指标使用通常服务于公司战略决策层。
- T2指标: 业务决策层面指标
为达成T1指标,公司会对目标拆解到业务线或者事业群,并有针对性地作出一系列运营策略,T2指标通常反映的是决策结果,一般属于支持性指标同时也是业务线或者事业群的核心指标,T2指标是T1指标的纵向拆解,便于T1指标定位问题。T2指标通常服务业务线或者事业群
T3指标:业务执行层面指标
T3指标是对T2指标的拆解,用于定位T2指标的问题,T3指标通常也是业务线或者事业群中最多的指标。不同部门,指标会有差异。T3指标便于一线运营或者分析人员开展工作,内容偏过程型指标。例如:电商公司中 T1指标:成交率 。拆解为对应T2指标:成功支付订单数,加购数。拆解为对应T3指标:商品曝光次数,商品弹出次数,商品取消购物车次数,放弃支付次数等。
OSM模型 (Objective,Strategy,Measurement)是指标体系建设过程中辅助确定核心的重要方法,包括业务目标,业务策略和业务度量 是指标内容横向的思考。
在《精益数据分析》一书中给出了两套比较常用的指标体系建设方法论,其中一个就是比较有名的海盗指标法,也就是我们经常听到的AARRR海盗模型。海盗模型是用户分析的经典模型,它反映了增长是系统性地贯穿于用户生命周期各个阶段的:用户拉新(Acquisition)、用户激活(Activation)、用户留存(Retention)、商业变现(Revenue)、用户推荐(Referral)。
AARRR模型
A拉新
通过各种推广渠道,以各种方式获取目标用户,并对各种营销渠道的效果评估,不断优化投入策略,降低获客成本。涉及关键指标例如新增注册用户数、激活率、注册转化率、新客留存率、下载量、安装量等
A活跃
活跃用户指真正开始使用了产品提供的价值,我们需要掌握用户的行为数据,监控产品健康程度。这个模块主要反映用户进入产品的行为表现,是产品体验的核心所在。涉及关键指标例如DAU/MAU 、日均使用时长、启动APP时长、启动APP次数等
R留存
衡量用户粘性和质量的指标。涉及关键指标例如留存率、流失率等
R变现
主要用来衡量产品商业价值。涉及关键指标例如生命周期价值(LTV)、客单价、GMV等
R推荐
衡量用户自传播程度和口碑情况。涉及关键指标例如邀请率、裂变系数等
可以根据实际业务场景,结合使用OSM和AARRR模型,来系统性的选择不同阶段所需要的核心数据指标。
目前阶段互联网业务比较流行的一种通用抽象场景“人、货、场”,实际就是我们日常所说的用户、产品、场景,在通俗点讲就是谁在什么场景下使用了什么产品,不同的商业模式会有不同的组合模式。
以滴滴实际场景为例:哪些场景(此处场景定义为终端,如Native,微信,支付宝)的什么人(乘客)在平台上使用了哪些货(平台业务线,如快车/专车等),进而为评估用户增长的价值和效果。分别列出人、货、场的数据指标、分析维度和业务目标即可
主要从业务、技术、产品三个视角来看:
业务视角
业务分析场景指标、维度不明确;
频繁的需求变更和反复迭代,数据报表臃肿,数据参差不齐;
用户分析具体业务问题找数据、核对确认数据成本较高。
技术视角
指标定义,指标命名混乱,指标不唯一,指标维护口径不一致;
指标生产,重复建设;数据汇算成本较高;
指标消费,数据出口不统一,重复输出,输出口径不一致;
产品视角
缺乏系统产品化支持从生产到消费数据流没有系统产品层面打通
技术目标
统一指标和维度管理,指标命名、计算口径、统计来源唯一, 维度定义规范、维度值一致
业务目标
统一数据出口、场景化覆盖
产品目标
指标体系管理工具产品化落地;指标体系内容产品化落地支持决策、分析、运营例如决策北极星、智能运营分析产品等
业务板块定义原则:业务逻辑层面进行抽象、物理组织架构层面进行细分,可根据实际业务情况进行层级分拆细化,层级分级建议进行最多进行三级分拆,一级细分可公司层面统一规范确定,二级及后续拆分可根据业务线实际业务进行拆分。例如滴滴出行领域业务逻辑层面两轮车和四轮车都属于出行领域可抽象出行业务板块(level一级),根据物理组织架构层面在进行细分普惠、网约车、出租车、顺风车(level二级),后续根据实际业务需求可在细分,网约车可细分独乘、合乘,普惠可细分单车、企业级。
数据域
指面向业务分析,将业务过程或者维度进行抽象的集合。其中,业务过程可以概括为一个个不拆分的行为事件,在业务过程之下,可以定义指标;维度,是度量的环境,如乘客呼单事件,呼单类型是维度。为了保障整个体系的生命力,数据域是需要抽象提炼,并且长期维护更新的,变动需执行变更流程。
业务过程
指公司的业务活动事件,如,呼单、支付都是业务过程。其中,业务过程不可拆分。
时间周期
用来明确统计的时间范围或者时间点,如最近30天、自然周、截止当日等。
修饰类型
是对修饰词的一种抽象划分。修饰类型从属于某个业务域,如日志域的访问终端类型涵盖APP端、PC端等修饰词。
修饰词
指的是统计维度以外指标的业务场景限定抽象,修饰词属于一种修饰类型,如在日志域的访问终端类型下,有修饰词APP、PC端等。
度量/原子指标
原子指标和度量含义相同,基于某一业务事件行为下的度量,是业务定义中不可再拆分的指标,具有明确业务含义的名称,如支付金额。
维度
维度是度量的环境,用来反映业务的一类属性,这类属性的集合构成一个维度,也可以称为实体对象。维度属于一个数据域,如地理维度(其中包括国家、地区、省市等)、时间维度(其中包括年、季、月、周、日等级别内容)。
维度属性
维度属性隶属于一个维度,如地理维度里面的国家名称、国家ID、省份名称等都属于维度属性。
指标分类
主要分为原子指标、派生指标、衍生指标
原子指标
基于某一业务事件行为下的度量,是业务定义中不可再拆分的指标,具有明确业务含义的名称,如呼单量、交易金额
派生指标
是1个原子指标+多个修饰词(可选)+时间周期,是原子指标业务统计范围的圈定。派生指标又分以下二种类型:
事务型指标:
是指对业务过程进行衡量的指标。例如,呼单量、订单支付金额,这类指标需要维护原子指标以及修饰词,在此基础上创建派生指标。
存量型指标:
是指对实体对象(如司机、乘客)某些状态的统计,例如注册司机总数、注册乘客总数,这类指标需要维护原子指标以及修饰词,在此基础上创建派生指标,对应的时间周期一般为“历史截止当前某个时间”。
衍生指标
是在事务性指标和存量型指标的基础上复合成的。主要有比率型、比例型、统计型均值
主要采用维度建模方法进行构建,基础业务明细事实表主要存储维度属性集合和度量/原子指标;分析业务汇总事实表按照指标类别(去重指标、非去重指标)分类存储,非去重指标汇总事实表存储统计维度集合、原子指标或派生指标,去重指标汇总事实表只存储分析实体统计标签集合。
指标体系在数仓物理实现层面主要是结合数仓模型分层架构进行指导建设,滴滴的指标数据主要存储在DWM层,作为指标的核心管理层。
包括基础信息和技术信息,由不同角色进行维护管理。
基础信息对应维度的业务信息,由业务管理人员、数据产品或BI分析师维护,主要包括维度名称、业务定义、业务分类。
技术信息对应维度的数据信息,由数据研发维护,主要包括是否有维表(是枚举维度还是有独立的物理维表)、是否是日期维、对应code英文名称和中文名称、对应name英文名称和中文名称。如果维度有维度物理表,则需要和对应的维度物理表绑定,设置code和name对应的字段。如果维度是枚举维,则需要填写对应的code和name。维度的统一管理,有利于以后数据表的标准化,也便于用户的查询使用。
包括基础信息、技术信息和衍生信息,由不同角色进行维护管理。
基础信息对应指标的业务信息,由业务管理人员、数据产品或BI分析师维护,主要包括归属信息(业务板块、数据域、业务过程),基本信息(指标名称、指标英文名称、指标定义、统计算法说明、指标类型(去重、非去重)),业务场景信息(分析维度,场景描述);
技术信息对应指标的物理模型信息,由数据研发进行维护,主要包括对应物理表及字段信息;
衍生信息对应关联派生或衍生指标信息、关联数据应用和业务场景信息,便于用户查询指标被哪些其它指标和数据应用使用,提供指标血缘分析追查数据来源的能力。
原子指标定义归属信息 + 基本信息 + 业务场景信息
派生指标定义时间周期 + 修饰词集合 + 原子指标
修饰类型主要包含类型说明、统计算法说明、数据源(可选)
建模流程主要是从业务视角指导工程师对需求场景涉及的指标进行主题抽象,归类,统一业务术语,减少沟通成本,同时避免后续的指标重复建设。
分析数据体系是模型架构中汇总事实表的物理集合,业务逻辑层面根据业务分析对象或场景进行指标体系抽象沉淀。滴滴出行主要是根据分析对象进行主题抽象的,例如司机主题、安全主题、体验主题、城市主题等。指标分类主要是根据实际业务过程进行抽象分类,例如司机交易类指标、司机注册类指标、司机增长类指标等。
基础数据体系是模型架构中明细事实表和基础维度表的物理集合,业务逻辑层面根据实际业务场景进行抽象例如司机合规、乘客注册等,还原业务核心业务过程。
开发流程是从技术视角指导工程师进行指标体系生产、运维及质量管控,也是数据产品或数据分析师和数仓研发沟通协调的桥梁。