stable-diffusion-webui 的模型更新

shared.py和sd_models.py中

shared.py:

options_templates.update(options_section(('sd', "Stable Diffusion"), {
    "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints),
    "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
    "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
    "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list).info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"),
    "sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"),
    "sd_unet": OptionInfo("Automatic", "SD Unet", gr.Dropdown, lambda: {"choices": shared_items.sd_unet_items()}, refresh=shared_items.refresh_unet_list).info("choose Unet model: Automatic = use one with same filename as checkpoint; None = use Unet from checkpoint"),
    "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
    "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}),
    "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
    "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies.").info("normally you'd do less with less denoising"),
    "img2img_background_color": OptionInfo("#ffffff", "With img2img, fill image's transparent parts with this color.", ui_components.FormColorPicker, {}),
    "enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."),
    "enable_emphasis": OptionInfo(True, "Enable emphasis").info("use (text) to make model pay more attention to text and [text] to make it pay less attention"),
    "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
    "comma_padding_backtrack": OptionInfo(20, "Prompt word wrap length limit", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1}).info("in tokens - for texts shorter than specified, if they don't fit into 75 token limit, move them to the next 75 token chunk"),
    "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer"),
    "upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
    "randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors"),
}))

模型的列表在list_checkpoint_tiles()中,更新在refresh_checkpoints中,282行

def list_checkpoint_tiles():
    import modules.sd_models
    return modules.sd_models.checkpoint_tiles()


def refresh_checkpoints():
    import modules.sd_models
    return modules.sd_models.list_models()

点击选中更改,sd_model.py的519行:

def reload_model_weights(sd_model=None, info=None):
    from modules import lowvram, devices, sd_hijack
    checkpoint_info = info or select_checkpoint()

    if not sd_model:
        sd_model = model_data.sd_model

    if sd_model is None:  # previous model load failed
        current_checkpoint_info = None
    else:
        current_checkpoint_info = sd_model.sd_checkpoint_info
        if sd_model.sd_model_checkpoint == checkpoint_info.filename:
            return

        sd_unet.apply_unet("None")

        if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
            lowvram.send_everything_to_cpu()
        else:
            sd_model.to(devices.cpu)

        sd_hijack.model_hijack.undo_hijack(sd_model)

    timer = Timer()

    state_dict = get_checkpoint_state_dict(checkpoint_info, timer)

    checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)

    timer.record("find config")

    if sd_model is None or checkpoint_config != sd_model.used_config:
        del sd_model
        load_model(checkpoint_info, already_loaded_state_dict=state_dict)
        return model_data.sd_model

    try:
        load_model_weights(sd_model, checkpoint_info, state_dict, timer)
    except Exception:
        print("Failed to load checkpoint, restoring previous")
        load_model_weights(sd_model, current_checkpoint_info, None, timer)
        raise
    finally:
        sd_hijack.model_hijack.hijack(sd_model)
        timer.record("hijack")

        script_callbacks.model_loaded_callback(sd_model)
        timer.record("script callbacks")

        if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
            sd_model.to(devices.device)
            timer.record("move model to device")

    print(f"Weights loaded in {timer.summary()}.")

    return sd_model

其中sd_model.py的165行中的select_checkpoint

def select_checkpoint():
    """Raises `FileNotFoundError` if no checkpoints are found."""
    model_checkpoint = shared.opts.sd_model_checkpoint

    checkpoint_info = checkpoint_alisases.get(model_checkpoint, None)
    if checkpoint_info is not None:
        return checkpoint_info

    if len(checkpoints_list) == 0:
        error_message = "No checkpoints found. When searching for checkpoints, looked at:"
        if shared.cmd_opts.ckpt is not None:
            error_message += f"\n - file {os.path.abspath(shared.cmd_opts.ckpt)}"
        error_message += f"\n - directory {model_path}"
        if shared.cmd_opts.ckpt_dir is not None:
            error_message += f"\n - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}"
        error_message += "Can't run without a checkpoint. Find and place a .ckpt or .safetensors file into any of those locations."
        raise FileNotFoundError(error_message)

    checkpoint_info = next(iter(checkpoints_list.values()))
    if model_checkpoint is not None:
        print(f"Checkpoint {model_checkpoint} not found; loading fallback {checkpoint_info.title}", file=sys.stderr)

    return checkpoint_info

实际如果在代码中想要更改权重:

 reload_model_weights(model_checkpoint=input_json.get('model', "chilloutmix_NiPrunedFp32Fix.safetensors"))

即可。

初始化在webui.py的270行

modules.sd_models.list_models()

中,主要Stable-diffusion下的模型都是提前初始化,在整个工程启动前,sd_model.py的113行

def list_models():
    checkpoints_list.clear()
    checkpoint_alisases.clear()

    cmd_ckpt = shared.cmd_opts.ckpt
    if shared.cmd_opts.no_download_sd_model or cmd_ckpt != shared.sd_model_file or os.path.exists(cmd_ckpt):
        model_url = None
    else:
        model_url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors"

    model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], download_name="v1-5-pruned-emaonly.safetensors", ext_blacklist=[".vae.ckpt", ".vae.safetensors"])

    if os.path.exists(cmd_ckpt):
        checkpoint_info = CheckpointInfo(cmd_ckpt)
        checkpoint_info.register()

        shared.opts.data['sd_model_checkpoint'] = checkpoint_info.title
    elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
        print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)

    for filename in sorted(model_list, key=str.lower):
        checkpoint_info = CheckpointInfo(filename)
        checkpoint_info.register()

被注册在checkpoint_info中

webui.py的311行,加载模型:

def load_model():
    """
        Accesses shared.sd_model property to load model.
        After it's available, if it has been loaded before this access by some extension,
        its optimization may be None because the list of optimizaers has neet been filled
        by that time, so we apply optimization again.
    """

    shared.sd_model  # noqa: B018

    if modules.sd_hijack.current_optimizer is None:
        modules.sd_hijack.apply_optimizations()

    Thread(target=load_model).start()

在shared.py的714行中

class Shared(sys.modules[__name__].__class__):
    """
    this class is here to provide sd_model field as a property, so that it can be created and loaded on demand rather than
    at program startup.
    """

    sd_model_val = None

    @property
    def sd_model(self):
        import modules.sd_models

        return modules.sd_models.model_data.get_sd_model()

    @sd_model.setter
    def sd_model(self, value):
        import modules.sd_models

        modules.sd_models.model_data.set_sd_model(value)


sd_model: LatentDiffusion = None  # this var is here just for IDE's type checking; it cannot be accessed because the class field above will be accessed instead
sys.modules[__name__].__class__ = Shared

sd_model的getter/setter属性,在sd_model.py的406行

class SdModelData:
    def __init__(self):
        self.sd_model = None
        self.was_loaded_at_least_once = False
        self.lock = threading.Lock()

    def get_sd_model(self):
        if self.was_loaded_at_least_once:
            return self.sd_model

        if self.sd_model is None:
            with self.lock:
                if self.sd_model is not None or self.was_loaded_at_least_once:
                    return self.sd_model

                try:
                    load_model()
                except Exception as e:
                    errors.display(e, "loading stable diffusion model", full_traceback=True)
                    print("", file=sys.stderr)
                    print("Stable diffusion model failed to load", file=sys.stderr)
                    self.sd_model = None

        return self.sd_model

    def set_sd_model(self, v):
        self.sd_model = v

在sd_model.py的438行,加载模型:


def load_model(checkpoint_info=None, already_loaded_state_dict=None):
    from modules import lowvram, sd_hijack
    checkpoint_info = checkpoint_info or select_checkpoint()

    if model_data.sd_model:
        sd_hijack.model_hijack.undo_hijack(model_data.sd_model)
        model_data.sd_model = None
        gc.collect()
        devices.torch_gc()

    do_inpainting_hijack()

    timer = Timer()

    if already_loaded_state_dict is not None:
        state_dict = already_loaded_state_dict
    else:
        state_dict = get_checkpoint_state_dict(checkpoint_info, timer)

    checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
    clip_is_included_into_sd = sd1_clip_weight in state_dict or sd2_clip_weight in state_dict

    timer.record("find config")

    sd_config = OmegaConf.load(checkpoint_config)
    repair_config(sd_config)

    timer.record("load config")

    print(f"Creating model from config: {checkpoint_config}")

    sd_model = None
    try:
        with sd_disable_initialization.DisableInitialization(disable_clip=clip_is_included_into_sd):
            sd_model = instantiate_from_config(sd_config.model)
    except Exception:
        pass

    if sd_model is None:
        print('Failed to create model quickly; will retry using slow method.', file=sys.stderr)
        sd_model = instantiate_from_config(sd_config.model)

    sd_model.used_config = checkpoint_config

    timer.record("create model")

    load_model_weights(sd_model, checkpoint_info, state_dict, timer)

    if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
        lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
    else:
        sd_model.to(shared.device)

    timer.record("move model to device")

    sd_hijack.model_hijack.hijack(sd_model)

    timer.record("hijack")

    sd_model.eval()
    model_data.sd_model = sd_model
    model_data.was_loaded_at_least_once = True

    sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True)  # Reload embeddings after model load as they may or may not fit the model

    timer.record("load textual inversion embeddings")

    script_callbacks.model_loaded_callback(sd_model)

    timer.record("scripts callbacks")

    with devices.autocast(), torch.no_grad():
        sd_model.cond_stage_model_empty_prompt = sd_model.cond_stage_model([""])

    timer.record("calculate empty prompt")

    print(f"Model loaded in {timer.summary()}.")

    return sd_model

你可能感兴趣的:(大模型,多模态和生成,stable,diffusion)