- 多开工具与语音识别技术的融合与创新
程序员
多开工具与语音识别技术的融合与创新摘要:随着科技的不断进步,多开工具和语音识别技术的融合与创新正在为我们的日常生活带来更加便利和高效的体验。本文将探讨多开工具和语音识别技术的结合,以及这种融合与创新对于各行业的影响和发展。引言:在数字化时代,多开工具和语音识别技术是两个独立发展的领域。多开工具是一种能够使用户同时运行多个应用程序的软件,而语音识别技术则是通过将人类语音转化为可理解的文本或命令的技术
- WhisperX:革命性的自动语音识别工具
孔秋宗Mora
WhisperX:革命性的自动语音识别工具项目地址:https://gitcode.com/gh_mirrors/wh/whisperX项目介绍WhisperX是一个开源的自动语音识别(ASR)项目,由m-bain开发。该项目基于OpenAI的Whisper模型,通过引入批量推理、强制音素对齐和语音活动检测等技术,实现了高达70倍的实时转录速度,并提供了准确的单词级时间戳和说话人识别功能。Whis
- 【前端开发学习笔记17】使用ai
wei387245232
学习笔记
AI的认知&两个工具-认知同步AI早已不是新事物(接受):语音识别,人脸识别,无人驾驶,智能机器人...(包括ChatGPT也是研发了多年的产物)AI本质是智能工具(认识):人工智能辅助,可以提升效率,但不具备思想意识,无法从零到一取代人类工作AI一定会淘汰掉一部分人:但一定会衍生出新的职业方向,逆水行舟,不进则退,学会拥抱变化ChatGPT的基本使用-Prompt优化AI互动中容易出现的问题AI
- cnn以及例子
阿拉斯攀登
机器学习cnn人工智能神经网络
cnnCNN即卷积神经网络(ConvolutionalNeuralNetwork),是一种专门为处理具有网格结构数据(如图像、音频)而设计的深度学习模型,在计算机视觉、语音识别等诸多领域都有广泛应用。以下是CNN的详细介绍:基本原理卷积层:是CNN的核心组成部分,通过卷积核在数据上滑动进行卷积操作,自动提取数据中的局部特征。例如,在处理图像时,卷积核可以检测图像中的边缘、线条等简单特征。卷积操作大
- 常见的深度学习模型总结
编码时空的诗意行者
深度学习人工智能
1.深度前馈神经网络(DeepFeedforwardNetworks)发明时间:2006年左右,随着计算能力的提升和大数据集的可用性增加,深度学习开始兴起。发明动机:解决传统机器学习模型在复杂数据上的局限性,如线性模型无法处理非线性关系的数据。模型特点:由多个隐藏层组成的神经网络,每一层的节点与下一层的节点完全连接。应用场景:分类、回归、语音识别、图像识别等。2.卷积神经网络(Convolutio
- 【深入探索-deepseek】高等数学与AI的因果关系
我的青春不太冷
人工智能机器学习数学
目录数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数2.微积分3.概率论与统计二、自然语言处理领域三、语音识别领域四、数学在AI不同领域应用的逻辑图五、参考资料数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数图像变换:想象我们有一张二维图片,图片里有个点,它的位置用坐标((x,y))表示。现在我们想把这个点绕着图片的原点(就像把纸钉在墙上,以钉子的位置为中心)逆时针旋转一定角度
- python录音pyaudio_python调用pyaudio使用麦克风录制wav声音文件的教程
极客羊
python录音pyaudio
python的pyaudio可以进行录音,播放,生成wav文件等等,WAVE是录音时用的标准的WINDOWS文件格式,文件的扩展名为WAV,数据本身的格式为PCM或压缩型,属于无损音乐格式的一种。在我们研究语音识别,自然语言处理的过程中,常常会使用到它,比如我们调用百度语音识别所以我们首先研究一下pyaudio库的安装与使用。安装:pipinstallpyaudio调用pyaudio使用麦克风录制
- 神经网络(Neural Network)
ningmengjing_
神经网络深度学习人工智能
引言神经网络,作为人工智能和机器学习领域的核心组成部分,近年来在诸多领域取得了显著的进展。受生物神经系统的启发,神经网络通过模拟人脑神经元的工作机制,能够从大量数据中学习复杂的模式和关系。其强大的非线性建模能力使其在图像识别、自然语言处理、语音识别和预测分析等任务中表现出色。神经网络的基本构建单元是神经元,每个神经元接收多个输入信号,通过加权求和并应用激活函数来生成输出。通过将这些神经元分层组织,
- 基于“感知–规划–行动”的闭环系统架构
由数入道
人工智能系统架构人工智能智能体
1.感知(Perception)1.1多模态数据采集与预处理传感器系统Agent的感知层通常由多种传感器组成,支持采集多种形式的数据:视觉:采用摄像头、深度传感器,通过卷积神经网络(CNN)、视觉Transformer等模型实现目标检测、图像分类、场景理解。听觉:利用麦克风阵列、声学传感器,结合声纹识别、语音识别(如基于Transformer或RNN的模型)技术处理音频信息。文本与语义信息:通过文
- 【鸿蒙开发】第二十四章 AI - Core Speech Kit(基础语音服务)
鸿蒙程序媛
鸿蒙理论知识学习harmonyos
目录1简介1.1场景介绍1.2约束与限制2文本转语音2.1场景介绍2.2约束与限制2.3开发步骤2.4设置播报策略2.4.1设置单词播报方式2.4.2设置数字播报策略2.4.3插入静音停顿2.4.4指定汉字发音2.5开发实例3语音识别3.1场景介绍3.2约束与限制3.3开发步骤3.4开发实例1简介CoreSpeechKit(基础语音服务)集成了语音类基础AI能力,包括文本转语音(TextToSpe
- 语音识别(Speech Recognition) 原理与代码实例讲解
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
语音识别(SpeechRecognition)-原理与代码实例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming/TextGenWebUILLM语音识别(SpeechRecognition)-原理与代码实例讲解语音识别作为人工智能领域的重要分支之一,近年来取得了显著的进步,尤其是在深度学习技术的推动下。它在智能家居、车载系统、智能客服等领域有着广泛
- 数字信号处理Python示例(13)生成方波信号
通信仿真实验室
Python示例数字信号处理信号处理python人工智能
文章目录前言一、方波信号1.方波的特点2.方波的应用3.方波的产生二、生成方波信号的Python代码三、仿真结果及分析写在后面的话前言从这篇文章开始,将继续给出生成非正弦信号的几个Python示例,包括方波、三角波、锯齿波、sinc函数和高斯信号,这几个都是在信号处理理论与应用中非常重要的信号。一、方波信号方波是一种非正弦周期波形,它的特征是在每个周期内电压或电流快速地在两个电平之间切换,通常是在
- AI智慧医疗系统源码与互联网医院APP开发攻略:功能、架构、合规
万岳软件开发小城
APP开发软件开发互联网医院系统源码人工智能APP开发软件开发互联网医院系统源码
今天,笔者将从功能设计、系统架构、合规要求等方面,深入解析AI智慧医疗系统源码与互联网医院APP的开发攻略,助力企业快速布局智慧医疗赛道。一、AI智慧医疗系统的核心功能要开发一款成熟的智慧医疗系统,必须具备以下几个关键功能模块:远程问诊与在线会诊语音/视频问诊:支持医生与患者远程实时沟通,结合AI语音识别和自然语言处理(NLP),实现病情描述、智能分析与自动记录。多方会诊:支持多名专家同时参与,为
- 多模态大模型:技术原理与实战 多模态大模型在情绪识别领域的应用
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
多模态大模型:技术原理与实战多模态大模型在情绪识别领域的应用1.背景介绍1.1问题由来近年来,深度学习技术在图像、语音、文本等多个模态的语音识别、视觉识别、自然语言处理等领域取得了重大突破。其中,多模态大模型(Multi-ModalLargeModel)以其强大的跨模态理解和融合能力,成为当下人工智能技术发展的热点。传统的单一模态大模型,如BERT、GPT等,尽管在各自模态上有着卓越的表现,但在处
- 为什么线下面试越来越流行了?
后端
不知道大家有没有发现,最近在找工作时,越来越多的公司开始要求必须线下面试了,例如,深信服:例如,华为:还有公司在发布招聘信息时也明确写明了“只能线下面试”:那背后的原因究竟是啥呢?原因一:作弊成本越来越低AI的诞生确实提供了很多便利,但也有人和团队利用AI来搞一些非正当的产品,例如AI面试辅助工具,它大概是这样的:面试官上远程问问题,这边的AI面试辅助工具通过语音识别很快就能找出正确的答案,让远程
- 微软文本转语音和语音转文本功能更新,效果显著!
wuhanwhite
pythonmicrosoftai人工智能TTSazurepython
今天我要和大家分享一个新功能更新——微软的文本转语音和语音转文本功能。最近,微软对其AI语音识别和语音合成技术进行了重大升级,效果非常好,现在我将分别为大家介绍这两个功能。先来听下这个效果吧微软文本转语音和语音转文本功能更新文本转语音文本转语音(Text-to-Speech,TTS)是一种将文本信息转换为自然听起来的语音的技术。微软的文本转语音功能提供了多种语言和语音选项,支持多种平台和设备,使得
- 《探秘卷积神经网络的核心—卷积核》
机器学习人工智能深度学习
在当今人工智能飞速发展的时代,卷积神经网络(CNN)在图像识别、语音识别等众多领域取得了令人瞩目的成就。而其中,卷积核作为CNN的核心组件,发挥着至关重要的作用。一、卷积核的概念卷积核是一个小矩阵,通常为正方形,其大小常见的有3x3、5x5等奇数尺寸。它就像是一个“小探测器”,在输入数据(如图像)上滑动,通过特定的运算来提取数据中的特征。卷积核中的每个元素都是一个权重参数,这些参数会在网络训练过程
- 使用Python进行语音识别:将音频转为文字
WmqApps
python语音识别音视频
语音识别是一项将语音信号转换为可理解的文本的技术。在Python中,我们可以使用一些库和工具来实现语音识别,并将音频转换为文本。本文将介绍如何使用Python进行语音识别的过程,并提供相应的源代码。步骤1:安装所需的库首先,我们需要安装一些Python库来支持语音识别。一个常用的库是SpeechRecognition,它提供了一个简单的接口来调用各种语音识别引擎。我们可以使用pip命令来安装Spe
- 开源项目实战:Whisper 环境下的语音识别与说话人分离完全指南
唐阔清
开源项目实战:Whisper环境下的语音识别与说话人分离完全指南whisper-diarizationAutomaticSpeechRecognitionwithSpeakerDiarizationbasedonOpenAIWhisper项目地址:https://gitcode.com/gh_mirrors/wh/whisper-diarization项目基础介绍本项目名为whisper-diar
- DSP定点运算之数字信号处理算法的定点化及其C语言仿真(转)
u010748717
DSP广义上指数字信号处理理论(DigitalSignalProcessing),狭义上指数字信号处理器(DigitalSignalProcessor)。数字信号处理理论广泛应用于语音、图象、遥测数据、电机控制等各个方面。现代个人通信、互联网、多媒体应用的飞速发展又推动着数字信号处理理论的进一步发展。现代信号处理(ASP)算法越来越复杂,处理的数据量越来越庞大。由于体系结构的限制,通用微处理器并不
- 人工智能在音乐中的自然语言处理技术:探讨音乐中的自然语言处理技术
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型python开发语言
文章目录人工智能在音乐中的自然语言处理技术:探讨音乐中的自然语言处理技术1.引言2.技术原理及概念3.实现步骤与流程4.应用示例与代码实现讲解人工智能在音乐中的自然语言处理技术:探讨音乐中的自然语言处理技术1.引言1.1.背景介绍随着人工智能技术的不断发展,自然语言处理(NLP)技术在音乐领域中的应用也越来越广泛。在过去的几年中,语音识别、唱歌比赛、歌词分析、智能推荐等应用已经在音乐行业中发挥了重
- MOE-conformer 流式多语种语音识别
深度学习-视听觉
语音识别人工智能
MOE(MixtureofExperts):MOE是一种通过专家混合来实现深度学习模型的方法,主要有以下特点:MOE由多个专家(Excpert)组成,每个专家是一个独立的神经网络(可以是MLP、CNN、RNN等)输入数据会被路由分配到不同的专家进行处理,目的是确定最适合处理输入的专家模型各个专家独立处理得到的结果进行加权聚合后输入结果各个专家独立计算,容易实现数据并行通过组合不同专家的强项,总体能
- python openai库讲解,以及如何调用deepseek的api
一念&
其它python开发语言
PythonOpenAI库讲解1.概述openai是Python中用于与OpenAI提供的一系列人工智能服务(如GPT系列模型)进行交互的官方库。借助这个库,开发者能够轻松地在Python代码里调用OpenAI的API来完成文本生成、图像生成、语音识别等多种任务。2.安装使用pip工具可以方便地安装openai库,在终端中执行以下命令:pipinstallopenai3.基本使用步骤3.1设置AP
- 大模型元年:人工智能的“寒武纪大爆发”
小马过河R
AI人工智能人工智能机器学习深度学习
2023年,注定被载入人工智能发展的史册。这一年,以ChatGPT为代表的生成式人工智能横空出世,掀起了一场席卷全球的科技风暴。大模型,作为这场风暴的核心,以其强大的通用性和创造性,宣告着人工智能“寒武纪大爆发”的到来,开启了人工智能发展的新纪元——大模型元年。一、从“专用”到“通用”:大模型开启AI新范式传统的人工智能模型往往是针对特定任务进行训练的“专用工具”,例如图像识别、语音识别等。而大模
- 目前市场上深度学习简介及沿革发展
Allen-Steven
python相关应用深度学习人工智能
深度学习是人工智能和机器学习的重要分支,其模型种类繁多,涵盖多个领域,如计算机视觉、自然语言处理、语音识别等。以下是目前市场上主流的深度学习模型,以及它们的发展历史和逐步沿革。1.感知机(Perceptron)及其扩展发展历史1958年:感知机由FrankRosenblatt提出,这是最早的人工神经网络模型,旨在模拟生物神经网络。局限性:感知机无法处理线性不可分问题,这一问题由MarvinMins
- 探索深度学习:开启智能新时代
顾漂亮
深度学习人工智能机器学习
目录深度学习究竟是什么?深度学习的“三驾马车”:数据、模型与算力深度学习的前沿模型架构深度学习在各领域的深度应用深度学习的挑战与应对策略深度学习的未来展望在当今科技飞速发展的时代,深度学习无疑是最炙手可热的领域之一。它宛如一把神奇的钥匙,开启了通往智能世界的大门,从语音识别到图像分类,从自动驾驶到医疗诊断,深度学习的身影无处不在,正深刻地改变着我们的生活与工作方式。深度学习究竟是什么?深度学习隶属
- 二值连接:深度神经网络的轻量级革命
步子哥
dnn人工智能神经网络
引言:深度学习的下一步是什么?深度神经网络(DeepNeuralNetworks,DNN)近年来在语音识别、图像分类和自然语言处理等领域取得了令人瞩目的成就。然而,这些突破背后的一个关键推手是计算能力的飞速提升,尤其是图形处理单元(GPU)的广泛应用。然而,随着模型规模和数据量的增长,深度学习的计算需求也在不断攀升。与此同时,移动设备和嵌入式系统的快速发展对低功耗、高效能的深度学习算法提出了更高的
- 因果推断与机器学习—因果表征学习与泛化能力
樱花的浪漫
因果推断机器学习学习人工智能深度学习自然语言处理计算机视觉
近十年来,深度学习在多个领域取得了巨大成功,包括机器视觉、自然语言处理、语音识别和生物信息等。这些成功为机器学习技术的进一步发展和应用奠定了基础。表征学习是深度学习的核心技术之一。在机器学习问题中,其主要目的是从观测到的低级变量中提取信息,进而学习到能够准确预测目标变量的高级变量。这种从低层次到高层次变量的学习过程,有助于模型更好地理解数据和进行预测。以德国马克斯-普朗克研究所的BernhardS
- 运行 Deepseek 视觉模型的方法
知识大胖
NVIDIAGPU和大语言模型开发教程deepseek人工智能
简介如果您有图形处理单元,则无需担心数据被收集,因为您可以在自己的机器上运行它。这一切都是免费的;方法如下!推荐文章《24GBGPU中的DeepSeekR1:UnslothAI针对671B参数模型进行动态量化》权重1,DeepSeek类《在RaspberryPi上运行语音识别和LLaMA-2GPTWhisperASR和LLaMA-2GPT模型的完全离线使用》权重2,llama类、边缘计算类《本地构
- CH32V003_STT 开源项目教程
柯晶辰Godfrey
CH32V003_STT开源项目教程ch32v003_sttSimpleSpeech-To-Textonthe'10cents'CH32V003Microcontroller项目地址:https://gitcode.com/gh_mirrors/ch/ch32v003_stt项目介绍CH32V003_STT是一个基于CH32V003微控制器的语音识别项目。该项目旨在提供一个简单易用的语音识别解决方
- jQuery 跨域访问的三种方式 No 'Access-Control-Allow-Origin' header is present on the reque
qiaolevip
每天进步一点点学习永无止境跨域众观千象
XMLHttpRequest cannot load http://v.xxx.com. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:63342' is therefore not allowed access. test.html:1
- mysql 分区查询优化
annan211
java分区优化mysql
分区查询优化
引入分区可以给查询带来一定的优势,但同时也会引入一些bug.
分区最大的优点就是优化器可以根据分区函数来过滤掉一些分区,通过分区过滤可以让查询扫描更少的数据。
所以,对于访问分区表来说,很重要的一点是要在where 条件中带入分区,让优化器过滤掉无需访问的分区。
可以通过查看explain执行计划,是否携带 partitions
- MYSQL存储过程中使用游标
chicony
Mysql存储过程
DELIMITER $$
DROP PROCEDURE IF EXISTS getUserInfo $$
CREATE PROCEDURE getUserInfo(in date_day datetime)-- -- 实例-- 存储过程名为:getUserInfo-- 参数为:date_day日期格式:2008-03-08-- BEGINdecla
- mysql 和 sqlite 区别
Array_06
sqlite
转载:
http://www.cnblogs.com/ygm900/p/3460663.html
mysql 和 sqlite 区别
SQLITE是单机数据库。功能简约,小型化,追求最大磁盘效率
MYSQL是完善的服务器数据库。功能全面,综合化,追求最大并发效率
MYSQL、Sybase、Oracle等这些都是试用于服务器数据量大功能多需要安装,例如网站访问量比较大的。而sq
- pinyin4j使用
oloz
pinyin4j
首先需要pinyin4j的jar包支持;jar包已上传至附件内
方法一:把汉字转换为拼音;例如:编程转换后则为biancheng
/**
* 将汉字转换为全拼
* @param src 你的需要转换的汉字
* @param isUPPERCASE 是否转换为大写的拼音; true:转换为大写;fal
- 微博发送私信
随意而生
微博
在前面文章中说了如和获取登陆时候所需要的cookie,现在只要拿到最后登陆所需要的cookie,然后抓包分析一下微博私信发送界面
http://weibo.com/message/history?uid=****&name=****
可以发现其发送提交的Post请求和其中的数据,
让后用程序模拟发送POST请求中的数据,带着cookie发送到私信的接入口,就可以实现发私信的功能了。
- jsp
香水浓
jsp
JSP初始化
容器载入JSP文件后,它会在为请求提供任何服务前调用jspInit()方法。如果您需要执行自定义的JSP初始化任务,复写jspInit()方法就行了
JSP执行
这一阶段描述了JSP生命周期中一切与请求相关的交互行为,直到被销毁。
当JSP网页完成初始化后
- 在 Windows 上安装 SVN Subversion 服务端
AdyZhang
SVN
在 Windows 上安装 SVN Subversion 服务端2009-09-16高宏伟哈尔滨市道里区通达街291号
最佳阅读效果请访问原地址:http://blog.donews.com/dukejoe/archive/2009/09/16/1560917.aspx
现在的Subversion已经足够稳定,而且已经进入了它的黄金时段。我们看到大量的项目都在使
- android开发中如何使用 alertDialog从listView中删除数据?
aijuans
android
我现在使用listView展示了很多的配置信息,我现在想在点击其中一条的时候填出 alertDialog,点击确认后就删除该条数据,( ArrayAdapter ,ArrayList,listView 全部删除),我知道在 下面的onItemLongClick 方法中 参数 arg2 是选中的序号,但是我不知道如何继续处理下去 1 2 3
- jdk-6u26-linux-x64.bin 安装
baalwolf
linux
1.上传安装文件(jdk-6u26-linux-x64.bin)
2.修改权限
[root@localhost ~]# ls -l /usr/local/jdk-6u26-linux-x64.bin
3.执行安装文件
[root@localhost ~]# cd /usr/local
[root@localhost local]# ./jdk-6u26-linux-x64.bin&nbs
- MongoDB经典面试题集锦
BigBird2012
mongodb
1.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟
- JavaScript异步编程Promise模式的6个特性
bijian1013
JavaScriptPromise
Promise是一个非常有价值的构造器,能够帮助你避免使用镶套匿名方法,而使用更具有可读性的方式组装异步代码。这里我们将介绍6个最简单的特性。
在我们开始正式介绍之前,我们想看看Javascript Promise的样子:
var p = new Promise(function(r
- [Zookeeper学习笔记之八]Zookeeper源代码分析之Zookeeper.ZKWatchManager
bit1129
zookeeper
ClientWatchManager接口
//接口的唯一方法materialize用于确定那些Watcher需要被通知
//确定Watcher需要三方面的因素1.事件状态 2.事件类型 3.znode的path
public interface ClientWatchManager {
/**
* Return a set of watchers that should
- 【Scala十五】Scala核心九:隐式转换之二
bit1129
scala
隐式转换存在的必要性,
在Java Swing中,按钮点击事件的处理,转换为Scala的的写法如下:
val button = new JButton
button.addActionListener(
new ActionListener {
def actionPerformed(event: ActionEvent) {
- Android JSON数据的解析与封装小Demo
ronin47
转自:http://www.open-open.com/lib/view/open1420529336406.html
package com.example.jsondemo;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
impor
- [设计]字体创意设计方法谈
brotherlamp
UIui自学ui视频ui教程ui资料
从古至今,文字在我们的生活中是必不可少的事物,我们不能想象没有文字的世界将会是怎样。在平面设计中,UI设计师在文字上所花的心思和功夫最多,因为文字能直观地表达UI设计师所的意念。在文字上的创造设计,直接反映出平面作品的主题。
如设计一幅戴尔笔记本电脑的广告海报,假设海报上没有出现“戴尔”两个文字,即使放上所有戴尔笔记本电脑的图片都不能让人们得知这些电脑是什么品牌。只要写上“戴尔笔
- 单调队列-用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值
bylijinnan
java算法面试题
import java.util.LinkedList;
/*
单调队列 滑动窗口
单调队列是这样的一个队列:队列里面的元素是有序的,是递增或者递减
题目:给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.
要求:f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1
问题的另一种描述就
- struts2处理一个form多个submit
chiangfai
struts2
web应用中,为完成不同工作,一个jsp的form标签可能有多个submit。如下代码:
<s:form action="submit" method="post" namespace="/my">
<s:textfield name="msg" label="叙述:">
- shell查找上个月,陷阱及野路子
chenchao051
shell
date -d "-1 month" +%F
以上这段代码,假如在2012/10/31执行,结果并不会出现你预计的9月份,而是会出现八月份,原因是10月份有31天,9月份30天,所以-1 month在10月份看来要减去31天,所以直接到了8月31日这天,这不靠谱。
野路子解决:假设当天日期大于15号
- mysql导出数据中文乱码问题
daizj
mysql中文乱码导数据
解决mysql导入导出数据乱码问题方法:
1、进入mysql,通过如下命令查看数据库编码方式:
mysql> show variables like 'character_set_%';
+--------------------------+----------------------------------------+
| Variable_name&nbs
- SAE部署Smarty出现:Uncaught exception 'SmartyException' with message 'unable to write
dcj3sjt126com
PHPsmartysae
对于SAE出现的问题:Uncaught exception 'SmartyException' with message 'unable to write file...。
官方给出了详细的FAQ:http://sae.sina.com.cn/?m=faqs&catId=11#show_213
解决方案为:
01
$path
- 《教父》系列台词
dcj3sjt126com
Your love is also your weak point.
你的所爱同时也是你的弱点。
If anything in this life is certain, if history has taught us anything, it is
that you can kill anyone.
不顾家的人永远不可能成为一个真正的男人。 &
- mongodb安装与使用
dyy_gusi
mongo
一.MongoDB安装和启动,widndows和linux基本相同
1.下载数据库,
linux:mongodb-linux-x86_64-ubuntu1404-3.0.3.tgz
2.解压文件,并且放置到合适的位置
tar -vxf mongodb-linux-x86_64-ubun
- Git排除目录
geeksun
git
在Git的版本控制中,可能有些文件是不需要加入控制的,那我们在提交代码时就需要忽略这些文件,下面讲讲应该怎么给Git配置一些忽略规则。
有三种方法可以忽略掉这些文件,这三种方法都能达到目的,只不过适用情景不一样。
1. 针对单一工程排除文件
这种方式会让这个工程的所有修改者在克隆代码的同时,也能克隆到过滤规则,而不用自己再写一份,这就能保证所有修改者应用的都是同一
- Ubuntu 创建开机自启动脚本的方法
hongtoushizi
ubuntu
转载自: http://rongjih.blog.163.com/blog/static/33574461201111504843245/
Ubuntu 创建开机自启动脚本的步骤如下:
1) 将你的启动脚本复制到 /etc/init.d目录下 以下假设你的脚本文件名为 test。
2) 设置脚本文件的权限 $ sudo chmod 755
- 第八章 流量复制/AB测试/协程
jinnianshilongnian
nginxluacoroutine
流量复制
在实际开发中经常涉及到项目的升级,而该升级不能简单的上线就完事了,需要验证该升级是否兼容老的上线,因此可能需要并行运行两个项目一段时间进行数据比对和校验,待没问题后再进行上线。这其实就需要进行流量复制,把流量复制到其他服务器上,一种方式是使用如tcpcopy引流;另外我们还可以使用nginx的HttpLuaModule模块中的ngx.location.capture_multi进行并发
- 电商系统商品表设计
lkl
DROP TABLE IF EXISTS `category`; -- 类目表
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `category` (
`id` int(11) NOT NUL
- 修改phpMyAdmin导入SQL文件的大小限制
pda158
sqlmysql
用phpMyAdmin导入mysql数据库时,我的10M的
数据库不能导入,提示mysql数据库最大只能导入2M。
phpMyAdmin数据库导入出错: You probably tried to upload too large file. Please refer to documentation for ways to workaround this limit.
- Tomcat性能调优方案
Sobfist
apachejvmtomcat应用服务器
一、操作系统调优
对于操作系统优化来说,是尽可能的增大可使用的内存容量、提高CPU的频率,保证文件系统的读写速率等。经过压力测试验证,在并发连接很多的情况下,CPU的处理能力越强,系统运行速度越快。。
【适用场景】 任何项目。
二、Java虚拟机调优
应该选择SUN的JVM,在满足项目需要的前提下,尽量选用版本较高的JVM,一般来说高版本产品在速度和效率上比低版本会有改进。
J
- SQLServer学习笔记
vipbooks
数据结构xml
1、create database school 创建数据库school
2、drop database school 删除数据库school
3、use school 连接到school数据库,使其成为当前数据库
4、create table class(classID int primary key identity not null)
创建一个名为class的表,其有一