- 卷积神经网络(CNN):深度学习中的核心模型
任义礼智信
深度学习cnn人工智能
引言卷积神经网络(ConvolutionalNeuralNetworks,CNNs)是深度学习领域的一种重要模型,广泛应用于图像处理、计算机视觉、自然语言处理等多个领域。CNN凭借其卓越的特征提取能力和参数共享机制,已成为计算机视觉任务中最主流的算法之一。本文将深入探讨CNN的基本原理、结构组件、应用场景及其发展方向。CNN的基本原理CNN是一种特殊的前馈神经网络(FeedforwardNeura
- OD C卷【热点网站统计】
laufing
OD算法题C卷自定义排序
题目企业路由器的统计页面,有一个功能需要动态统计公司访问最多的网页URLtopN,设计一个算法,可以高效动态统计TopN的页面;输入描述:每一行都是一个url或者一个数字;如果是url,代表一段时间内的网页访问,如果是一个数字N,代表本次需要输出的TopN个url;输入约束:总访问网页数量小于5000个,单网页访问次数小于65535次;网页url仅由字母、数字、点组成,且长度小于等于127字节;数
- 深度学习图像算法中的网络架构:Backbone、Neck 和 Head 详解
肥猪猪爸
#深度学习深度学习算法人工智能数据结构神经网络计算机视觉机器学习
深度学习已经成为图像识别领域的核心技术,特别是在目标检测、图像分割等任务中,深度神经网络的应用取得了显著进展。在这些任务的网络架构中,通常可以分为三个主要部分:Backbone、Neck和Head。这些部分在整个网络中扮演着至关重要的角色,它们各自处理不同的任务,从特征提取到最终的预测输出,形成了一个完整的图像处理流程。本文将详细介绍这三部分的作用以及它们在目标检测和图像分割中的应用,帮助大家更好
- NL2SQL技术方案系列(6):金融领域知识检索,NL2SQL技术方案以及行业案例实战讲解4
汀、人工智能
LLM工业级落地实践人工智能NL2SQLLLM自然语言处理copilot知识检索语义搜索
NL2SQL技术方案系列(6):金融领域NL2SQL技术方案以及行业案例实战讲解4NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(SpidervsBIRD)全面对比优劣分析[Text2SQL、Text2DSL]NL2SQL基础系列(2):主流大模型与微调方法精选集,Text2SQL经典算法技术回顾七年发展脉络梳理NL2SQL进阶系列(1):DB-GPT-Hub、SQLco
- Random指定随机种子遇到的坑
咖啡程序员
Random
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言指定随机种子出现的问题?总结前言业务中,之前有一个抽奖的需求,之初想让固定的奖品和玩家绑定一个固定的池子,也就是每个用户对应抽奖的池子的随机种子是固定的!但是这样就会遇到一个巨大的坑!在指定Random随机种子的时候一定要谨慎!指定随机种子出现的问题?在计算机编程中,随机数生成算法实际上是通过确定性的计算来产生伪随机数序列
- 大数据新视界 -- 大数据大厂之 Hive 数据压缩算法对比与选择(下)(20 / 30)
青云交
大数据新视界#Hive之道大数据Hive数据压缩压缩算法对比选择因素案例分析实时数据处理数据存储优化sql
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 密码机服务器在云计算中的应用与挑战
SafePloy安策
服务器云计算运维
随着云计算技术的迅猛发展和普及,密码机服务器作为一种高效、专业的数据安全解决方案,正在云计算领域中扮演着越来越重要的角色。本文将探讨密码机服务器在云计算中的应用及其面临的挑战。云计算技术涉及大量的数据传输和存储,数据的安全性和隐私性是一大挑战。密码机服务器,作为数据安全的核心设备,通过先进的加密算法和高速处理芯片,为服务器上的数据提供高强度、实时的加密解密服务。与传统的软件加密相比,硬件级别的加密
- 手把手教你学simulink(79.1)--智能家居窗帘与窗户控制场景实例:基于Simulink设计和仿真一个智能窗帘与窗户控制系统,以实现对室内环境的有效管理
小蘑菇二号
手把手教你学MATLAB专栏手把手教你学Simulinkmatlabsimulink
目录智能窗帘与窗户控制系统场景下的天气适应性操作建模项目实例项目背景介绍系统架构1.传感器模块(Sensors)2.控制器模块(Controller)3.执行器模块(Actuator)4.通信模块(Communication)仿真实现步骤1.创建新的Simulink模型2.添加传感器模块光照传感器温度传感器天气传感器在Simulink中实现传感器模块3.添加控制器模块天气分析算法决策算法在Simu
- 遗传算法与深度学习实战(25)——使用Keras构建卷积神经网络
盼小辉丶
遗传算法与深度学习实战深度学习kerascnn
遗传算法与深度学习实战(25)——使用Keras构建卷积神经网络0.前言1.卷积神经网络基本概念1.1卷积1.2步幅1.3填充1.4激活函数1.5池化2.使用Keras构建卷积神经网络3.CNN层的问题4.模型泛化小结系列链接0.前言卷积神经网络(ConvolutionalNeuralNetwork,CNN)的提出是为了解决传统神经网络的缺陷。即使对象位于图片中的不同位置或其在图像中具有不同占比,
- 经典约瑟夫环问题(多种解法)
曦月逸霜
数据结构算法
约瑟夫环(猴子选大王问题)前言本文是基于懒猫老师的数据结构课程所编写,我在这里直接给上地址:课程链接1.循环链表实现具体算法思想的文字图片描述后面补:…可以去看懒猫老师课程·或者我下面代码中的笔记去理解#include#include/*约瑟夫环可以联想成猴子选大王的问题,*约瑟夫问题:有n只猴子,按顺时针方向围成一圈选大王(编号从1到n),*从第1号开始报数,一直数到m,数到m的猴子退出圈外,剩
- c++扫雷9乘9
小兲lyy
c++算法开发语言
这应该是本站最简单的,代码最少的扫雷程序罢。运用了随机数,函数,以及一些简单的算法#include#includeusingnamespacestd;intmap[10][10],boom[10][2],x,y,knowmap[10][10],doit,f=9,yesf;voidaction(){//初始化雷的位置for(inti=1;i>x;cout>y;cout>doit;do_it(doit
- 2041. 面试中被录取的候选人 - 力扣(LeetCode)
c0de_k1ng1
面试职场和发展
2041.面试中被录取的候选人-力扣(LeetCode)目标输入表:Candidatescandidate_idnameyears_of_expinterview_id11Atticus11019Ruben61046Aliza101098Alfredo0107表:Roundsinterview_idround_idscore1093410128109411071310436109141044710
- leetcode 面试经典 150 题:快乐数
码流怪侠
数据结构与算法leetcode面试算法哈希表数据结构与算法unordered_set快乐数
链接快乐数题序号202题型数组解题方法哈希表难度简单熟练度✅✅✅✅题目编写一个算法来判断一个数n是不是快乐数。[快乐数]定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。然后重复这个过程直到这个数变为1,也可能是无限循环但始终变不到1。如果这个过程结果为1,那么这个数就是快乐数。如果n是快乐数就返回true;不是,则返回false。示例1:输入:n=19输出:true解释:12
- Python加密算法有哪些?有什么作用?
Python中的常见加密算法及其应用加密算法在现代计算机科学中扮演着至关重要的角色,它们用于保护数据的机密性、完整性和验证身份。在Python中,有许多加密算法可以使用,它们各自具有不同的特点和应用场景。以下是一些常见的加密算法及其详细介绍:1.AES(AdvancedEncryptionStandard)️简介:AES是一种对称加密算法,广泛用于保护敏感数据,属于块加密算法。AES有三种密钥长度
- 遗传算法与深度学习实战(26)——编码卷积神经网络架构
盼小辉丶
遗传算法与深度学习实战深度学习cnn遗传算法
遗传算法与深度学习实战(26)——编码卷积神经网络架构0.前言1.EvoCNN原理1.1工作原理1.2基因编码2.编码卷积神经网络架构小结系列链接0.前言我们已经学习了如何构建卷积神经网络(ConvolutionalNeuralNetwork,CNN),在本节中,我们将了解如何将CNN模型的网络架构编码为基因,这是将基因序列进化在为给定数据集上训练最佳模型的先决条件。1.EvoCNN原理进化卷积神
- 多维偏好分析及其在实际决策中的应用:基于PCA-KMeans的数据降维与模式识别方法
多维偏好分析(MultidimensionalPreferenceAnalysis,MPA)是一种在市场营销、心理学和公共政策等领域广泛应用的分析工具,用于研究多维度下的复杂偏好决策过程。在高维数据集中,当属性与偏好之间存在非线性关系或维度重叠时,偏好的理解和可视化呈现出显著的技术挑战。本文本将研究采用主成分分析(PrincipalComponentAnalysis,PCA)和K均值聚类算法对鸢尾
- 关于2025年智能化招聘管理系统平台发展趋势
yongyoudayee
数智招聘
2025年,招聘管理领域正站在变革的十字路口,全新的技术浪潮与不断变化的职场生态相互碰撞,促使招聘管理系统成为重塑企业人才战略的关键力量。智能化招聘管理系统平台在这一背景下迅速崛起,其发展趋势不仅影响企业的招聘效率与质量,还深刻改变着人力资源市场的生态格局。一、智能化招聘管理系统平台的核心特征与发展趋势1.深度学习算法与大数据分析的应用2025年的招聘管理系统将依托深度学习算法与大数据分析,彻底颠
- 《C++ 赋能强化学习:Q - learning 算法的实现之路》
c++人工智能深度学习
在当今科技飞速发展的时代,人工智能无疑是最热门的领域之一,而强化学习作为其中的重要分支,正逐渐改变着我们解决复杂问题的方式。Q-learning算法作为强化学习中的经典算法,在众多领域如游戏、机器人控制、资源管理等有着广泛的应用前景。本文将深入探讨如何用C++实现强化学习中的Q-learning算法,带您领略C++在人工智能领域的强大魅力。一、强化学习与Q-learning算法概述强化学习是一种通
- 搜广推日常实习面经一
Y1nhl
搜广推面经深度优先算法python推荐算法搜索引擎pytorch深度学习
写在前面:除了校招的面经,实习的面经我也会更新,毕竟俺后续可能还要找一段实习。从八股来看,实习的八股更加的八股一点。和校招的面经有点不一样,所以还是可以学习了解一下。总之一句话:面向工作学习,而不是面向实验室学习!唯品会广州—搜索算法实习生一、手撕二叉树的最大深度_力扣104深度优先遍历+递归#Definitionforabinarytreenode.#classTreeNode:#def__in
- 第十三届蓝桥杯b组国赛dp问题
鱼香rose__
#蓝桥杯#动态规划蓝桥杯算法c++
第十三届蓝桥杯b组国赛dp问题\Huge{第十三届蓝桥杯b组国赛dp问题}第十三届蓝桥杯b组国赛dp问题刷题的时候发现往年国赛题中有三道dp问题,而且还都是背包问题,正好最近没写过dp,那就简单整理一下,尽量把我思路整理清楚hhh。关于背包问题,可以查看这篇博客:背包九讲——九种背包问题的算法思路+代码分析-CSDN博客题目链接:备赛蓝桥杯-蓝桥云课(lanqiao.cn)文章目录2022题意思路
- PID算法基础
weixin_52799893
算法
1.基础介绍PID(比例-积分-微分)是一种常用的控制器,通常用于调节过程控制系统中的稳态误差。它是由三个基本部分组成的:比例(P)、积分(I)和微分(D)。比例部分:它是最简单和最基本的部分,主要作用是纠正偏差。当系统偏离目标值时,比例部分会根据偏差的大小产生一个相应的输出,以尝试将系统带回目标值。积分部分:这部分的作用是消除系统的稳态误差。只要系统存在误差,积分部分就会产生一个相应的输出,以尝
- 理解音频效果处理中的滤波器:通俗易懂的讲解与实用例子
Crazy learner
音频基础滤波器音频
目录1.**混响(Reverb)****算法混响效果(AlgorithmicReverb)**2.**压缩器(Compressor)****动态范围压缩(DynamicRangeCompression)**3.**低通滤波器(Low-PassFilter)**4.**高通滤波器(High-PassFilter)**5.**带通滤波器(Band-PassFilter)**6.**陷波滤波器(Notc
- 主动降噪技术:原理、方法与应用的深度解析
Crazy learner
音频基础主动降噪音频语音识别
目录一、主动降噪的原理二、主动降噪的技术分类三、主动降噪中的核心算法四、主动降噪的应用领域五、主动降噪技术的挑战与未来发展六、结论主动降噪(ActiveNoiseCancellation,ANC)是当前音频技术中的重要应用,广泛用于耳机、车辆、工业环境及航空等场景。与被动降噪(通过物理结构隔绝噪音)不同,主动降噪通过电子系统发出与噪声相位相反的声音信号来抵消噪音,从而达到降噪效果。随着电子元件和音
- 10分钟快速扫盲:以太坊与Layer2
在介绍以太坊前,我们先来了解一些区块链技术的基础知识。什么是区块链?区块链是一种分布式账本技术,它通过去中心化的方式,将交易记录以区块的形式链接在一起,并通过共识算法确保数据的安全和一致性。区块链的最著名应用就是比特币。区块链的核心特点是去中心化和安全性。去中心化:没有中心机构控制整个系统,而是由网络中的节点共同维护和验证数据。安全性:通过共识算法和加密技术来保证,使得数据不可篡改和抵御恶意攻击。
- 密评专用 双算法SSL证书申请
密评专用双算法SSL证书的申请过程涉及多个步骤,以下是详细的申请指南:一、选择CA机构并注册账号选择CA机构:选择一个受信任且提供双算法SSL证书服务的CA机构。JoySSL是一个知名的国产品牌,提供多种类型的证书,包括支持国际算法和国密算法的双算法SSL证书。注册账号:访问JoySSL官方网站,注册一个账号用于证书申请与下载。在注册过程中,可能需要填写一些基本信息,并在指定位置填写注册码(230
- [Python数据分析]最通俗入门Kmeans聚类分析,可视化展示代码。
William数据分析
pythonkmeans数据分析分类机器学习python
什么是k-means分析?【头条@William数据分析,看原版】想象一下,你有一堆五颜六色的糖果,你想把它们按照颜色分成几堆。k-means分析就是这么一个自动分类的过程。它会根据糖果的颜色特征,把它们分成若干个组,每个组里的糖果颜色都比较相似。更专业一点说,k-means分析是一种常用的聚类算法,它会将数据集中的数据点分成k个不同的簇。每个簇都有一个中心点,这个中心点就是簇中所有数据点的平均值
- 力扣 155. 最小栈
pursuit_csdn
力扣热题100leetcode算法职场和发展
https://leetcode.cn/problems/min-stack/description题目实现一个stack,可以o1返回stack的最小值思路刚开始套单调队列了,后来发现并不需要那么麻烦每次记录比当前栈顶还小的值,形成一个min_stack,有pop就判断是不是min_stack的top也被pop了,更新维护下min_stack就是性能不咋优代码classMinStack{publ
- MurmurHash Tips(qbit)
pythonjavahash
简介MurmurHash是一种非加密型哈希函数(Non-cryptographichashfunction),适用于一般的哈希检索操作。与其它流行的哈希函数相比,对于规律性较强的key,MurmurHash的随机分布特征表现更良好。常见的MD5、SHA1是加密型哈希函数(Cryptographichashfunction)Hash算法评价杨保华《区块链·原理、设计与应用》第5章密码学与安全技术中讲
- YOLOV8涨点技巧之MCA多维协作注意力模块
呆头鹅AI工作室
深度学习算法详解及代码复现YOLO深度学习人工智能计算机视觉pythonconda
1.算法设计:基于MCA的YOLOv8优化1.1总体架构YOLOv8的优化算法在原有架构的基础上,引入了MCA模块,以增强特征提取能力和目标定位精度。MCA模块被嵌入到YOLOv8的主干网络(Backbone)和特征金字塔网络(FPN)中,用于捕捉多维度的上下文信息。1.2MCA模块设计MCA模块的核心思想是通过多维度的注意力机制(如通道注意力、空间注意力和尺度注意力)来增强特征表示。其结构如下:
- 设计一个缓存策略,动态缓存热点数据
「已注销」
智力题&场景题缓存数据库java排行榜
写在前面,因为我们最近的大作业项目需要用到热点排行这个功能,因为我们是要使用Elasticsearch来存储数据,然后最初设想是在ES中实现这个热点排行的功能,但是经过仔细思考,在我们这个项目中使用ES来做热点排行是一个很蠢的方式,因为我们这只是一个很小的排行,所以最终我们还是使用Redis来实现热点排行使用LRU?LRU是一种常见的算法,假如我们设定TOP10的热点数据,那么我们可以规定LRU容
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_