- R语言学习实例:使用R进行数据可视化
PixelCoder
信息可视化r语言学习R语言
R语言学习实例:使用R进行数据可视化R语言是一种功能强大且广泛使用的统计分析和数据可视化工具。在本实例中,我们将使用R语言来创建一些常见的数据可视化图表,包括散点图、柱状图和折线图。我们将展示如何使用R的基本绘图功能和一些常用的绘图库来生成这些图表。散点图是一种用于显示两个变量之间关系的图表。我们可以使用R的基本绘图功能来创建散点图。下面是一个示例代码,展示如何使用R创建散点图:#创建示例数据x<
- 探索R语言:经典案例解析与源代码
翠绿探寻
r语言信息可视化开发语言R语言
探索R语言:经典案例解析与源代码引言:R语言是一种流行的数据分析和统计建模工具,具有丰富的功能和广泛的应用领域。在本文中,我们将通过经典案例来探索R语言的一些重要功能和技术。我们将提供相应的源代码,以便读者能够实际运行并理解这些示例。案例一:数据导入与处理在数据分析中,数据导入和处理是首要任务。R语言提供了丰富的函数和包,用于处理各种数据格式。下面是一个简单的示例,演示了如何导入和处理CSV格式的
- R语言dataframe数据索引、访问: 使用attach函数绑定dataframe数据、这样可以直接使用列名称访问dataframe的列数据
omhdxgb
R语言123r语言数据挖掘人工智能机器学习数据分析
R语言dataframe数据索引、访问:使用attach函数绑定dataframe数据、这样可以直接使用列名称访问dataframe的列数据目录R语言dataframe数据索引、访问:使用attach函数绑定dataframe数据、这样可以直接使用列名称访问dataframe的列数据R语言特点R语言dataframe数据索引、访问:使用attach函数绑定dataframe数据、这样可以直接使用列
- R语言向量vector数据类型元素索引、访问:使用中括号[]和:符号以及乘法符号获取向量中指定范围内的偶数索引元素
omhdxgb
R语言123r语言机器学习数据挖掘人工智能数据分析
R语言向量vector数据类型元素索引、访问:使用中括号[]和:符号以及乘法符号获取向量中指定范围内的偶数索引元素目录R语言向量vector数据类型元素索引、访问:使用中括号[]和:符号以及乘法符号获取向量中指定范围内的偶数索引元素R语言特点R语言向量vector数据类型元素索引、访问:使用中括号[]和:符号以及乘法符号获取向量中指定范围内的偶数索引元素R可以在CRAN(Comprehensive
- R语言安装github包出现的错误,object "XXX" is not exported by "namespace:viridisLite"
momo酱豆是沃
anaconda各种问题
自己遇上了类似的问题,当时是把所有导致这个问题出现时安装的所有包我都卸载了,再次重装的。弄了很久,我发现都是在安装各种包让我更新我不更新导致的后果R,告诉我一个道理,一定要听话,让你更新就更新,不然我的bug出到让你崩溃。下图借用以为博主的图(https://blog.csdn.net/yw_vine/article/details/79631042)原连接R语言安装github包出现的错误,ob
- R语言 ggplot2 可视化生成高分辨率图片实战
PixelEnigma
r语言开发语言R语言
R语言ggplot2可视化生成高分辨率图片实战在数据分析和可视化领域,R语言一直是研究人员和数据科学家们的首选工具。其中,ggplot2包是R语言中最受欢迎和强大的可视化工具之一。它提供了许多灵活且精美的图形选项,使用户能够轻松创建具有吸引力和信息丰富的图表。本文将介绍如何使用ggplot2包在R语言中生成高分辨率的图片。我们将探索不同的保存选项,以确保我们获得清晰、适应各种输出需求的图像。首先,
- Java 中操作 R:深度整合与高效应用
froginwe11
开发语言
Java中操作R:深度整合与高效应用引言随着大数据和机器学习的快速发展,R语言在数据分析和可视化方面扮演着越来越重要的角色。而Java作为一种广泛应用于企业级应用开发的语言,其强大的功能和稳定性使其成为构建高性能应用的首选。本文将探讨Java如何操作R语言,实现高效的数据分析应用。一、Java操作R的背景R语言优势:R语言拥有丰富的统计分析、数据可视化工具和机器学习算法库,是数据分析领域的首选语言
- R语言对高频交易订单流进行建模分析 4
oxuzhenyi
实验楼课程机器学习R
一、实验介绍--订单流模型拟合1.1实验知识点指数核hawkes过程拟合正反馈强度分析订单量影响分析1.2实验环境R3.4.1Rstudio二、订单流模型拟合在上节中我们对订单流数据做了一些统计分析,对交易的一些特征有了一些粗浅的理解,在本节中我们要做的是利用实际数据来拟合hawkes过程,看一看真实数据的订单流动力学中有什么特征。首先我们仍是选出交易时间内的数据:library(tidyvers
- R语言对高频交易订单流进行建模分析 3
oxuzhenyi
实验楼课程机器学习R
一、实验介绍--订单流数据描述分析1.1实验知识点订单流数据表示订单间隔分析订单信息率平稳性研究订单流动性研究限价单相对价格分析1.2实验环境R3.4.1Rstudio二、订单流数据描述分析2.1订单流数据表示当我们在金融市场上做交易时,可以看到一个委托单簿,上面陈列着买价和卖价以及它们对应的量,举个例子,比特币市场的订单簿:可以看到红色代表的是卖价,或者说是ask,而绿色代表的是买价,或者说是b
- 【自学笔记】R语言基础知识点总览-持续更新
Long_poem
笔记r语言开发语言
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录R语言基础知识点总览1.R语言简介2.R语言安装与环境配置3.R语言基础语法3.1数据类型3.2向量与矩阵3.3数据框与列表4.控制结构4.1条件语句4.2循环结构5.函数6.数据可视化总结R语言基础知识点总览1.R语言简介R是一种用于统计计算和图形的编程语言和软件环境。R语言由RossIhaka和RobertGentlema
- R语言 决策树、svm支持向量机、随机森林
别叫我名字20
R语言决策树支持向量机r语言
本人正在学习R语言,想利用这个平台记录自己一些自己的学习情况,方便以后查找,也想分享出来提供一些资料给同样学习R语言的同学们。(如果内容有错误,欢迎大家批评指正)1.决策树我们使用的还是RStudio自带的数据集iris。#######################决策树模型install.packages("rpart")#安装库library("rpart")dt<-function(dat
- 决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost 和 LightGBM算法的R语言实现
生信与基因组学
生信分析项目进阶技能合集算法机器学习r语言
基本逻辑(1)使用rnorm函数生成5个特征变量x1到x5,并根据这些特征变量的线性组合生成一个二分类的响应变量y;(2)将生成的数据存储在数据框中,处理缺失值,并将响应变量转换为因子类型;(3)使用决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost和LightGBM六种机器学习模型算法对数据进行训练和评估;(4)将各个模型的准确率和AUC值存储在结果数据框中,并通过柱状图展示结果。1.R包
- R语言2——数据类型和基本运算
朝荣
#R语言R语言运算R数据类型
R语言2——数据类型和基本运算目录R语言2——数据类型和基本运算1.R的数据类型1.R的数据类型(1)Logical(逻辑型):只有两个值TRUE,FALSE(2)Numeric(数字):整数、小数等(3)Complex(复合型):带有虚数i的数,如1+2i(4)Character(字符):包含在“”之中,如“hello!”(5)Vectors向量:c()函数,将元素组合成一个向量。c(1,2,3
- R语言获取数据——手工输入数据
蜗牛数据分析
R语言从入门到实战r语言开发语言
在R语言中获取数据集的方法有多种,例如读取Excel文件、数据库中的文件,而当我们没有这些渠道能够获取到数据集时,也可以手工输入数据,即通过键盘输入数据,它是获取数据集的最简单方法。另外,还可以在代码中直接输入数据,下面分别进行介绍。数据编辑器R提供了内置的数据编辑器,通过edit()函数调用该编辑器就可以实现手工输入数据。举例1:通过数据编辑器创建学生成绩表下面实现“学生成绩表”,具体步骤如下:
- R语言——数据框
高现实
r语言
R语言——数据框data.table/data.frame1、数据框数据框是R的一个重要数据类型,用来存储表格数据2、可认为是特殊类型的列表,列表中每个元素(每类)都有同样的长度每一列3、可以是不同的类型(矩阵是相同的)特殊属性:行名row.names4、可以通过读取表格函数read.table()或read.csv()读取数据框5、可以通过调用data.matrix()将数据框转化为矩阵x<-d
- R语言入门——数据类型和数据结构
Sean1014
r语言数据结构r语言
变量基本说明R语言计算的过程中,通常需要使用变量来存放中间结果。变量相当于给定一个空间,只能保存一种数据结构,只保存最后一次被赋值的数据。无需事先声明。命名规则变量名应该尽可能简单、意义明确,命名遵循一定规律,以便与他人交流理解。只能使用字母(区分大小写)、数字、下划线“_”和英文句点“.”给变量命名;不能以数字、下划线作为开头;若以句点开头,第二位不能是数字;变量名有效性原因var_name1.
- 探索大数据分析的无限可能:R语言的应用与实践
Echo_Wish
大数据数据分析r语言数据挖掘
探索大数据分析的无限可能:R语言的应用与实践随着数据时代的来临,大数据已经成为各行各业的重要资产。如何从海量数据中挖掘出有价值的信息,成为了企业和研究人员关注的焦点。在众多的数据分析工具中,R语言因其强大的统计分析功能和丰富的生态系统,备受青睐。本文将深入探讨使用R语言进行大数据分析的方法和实践,并通过实例代码加以说明。为什么选择R语言?R语言是一种专门用于统计分析和数据可视化的编程语言,具有以下
- 利用R语言irr包计算ICC值(组内相关系数)
mlhylzqwxli
r语言
ICC值是一个较为陌生的概念,在统计学中应用较多,引用百度百科的介绍:组内相关系数(ICC)是衡量和评价观察者间信度(inter-observerreliability)和复测信度(test-retestreliability)的信度系数(reliabilitycoefficient)指标之一。它最先由Bartko于1966年用于测量和评价信度的大小。ICC等于个体的变异度除以总的变异度,故其值介
- R语言机器学习系列-随机森林回归代码解读
Mrrunsen
R语言大学作业机器学习回归r语言
回归问题指的是因变量或者被预测变量是连续性变量的情形,比如预测身高体重的具体数值是多少的情形。整个代码大致可以分为包、数据、模型、预测评估4个部分,接下来逐一解读。1、包部分,也就是加载各类包,包括随机森林包randomForest,数据相关包tidyverse、skimr、DataExplorer,模型评估包caret。2、数据部分,主要是读取数据,处理缺失值,转换变量类型。3、模型部分。为了对
- r语言手动算两个C指数p值,如何用R语言进行Pvalue显著性标记?
蒲牢森
r语言手动算两个C指数p值
作者:一只想飞的喵审稿:童蒙编辑:angelica箱线图是统计学中较常见的图形之一。这篇文章将讲述如何简单比较两组或多组的平均值,且添加显著性标记。通常情况根据显著性p值的数值大小,分为四类:(1)0.01≤p<0.05,*(2)0.001≤p<0.01,**(3)0.0001≤p<0.001,***(4)p<0.0001,****接下来会讲述三种添加显著性标记的方法。方法1-手动添加1:创建数据
- 使用geom_bracket函数为指定水平箱图之间添加假设检验名称以及显著性水平p值(R语言)
认真写代码i
r语言开发语言R语言
使用geom_bracket函数为指定水平箱图之间添加假设检验名称以及显著性水平p值(R语言)在R语言中,我们经常使用箱图(boxplot)来可视化数据的分布和比较不同组之间的差异。当我们进行假设检验时,除了展示箱图之间的差异,还需要在图形上添加假设检验的名称和显著性水平p值,以便更清晰地表达结果。在本文中,我们将介绍如何使用ggplot2包中的geom_bracket函数为指定水平箱图之间添加假
- R语言绘图:韦恩图
善木科研
R语言r语言生信分析生物信息数据分析
韦恩分析韦恩分析(VennAnalysis)常用于可视化不同数据集之间的交集和并集。维恩图(Venndiagram),也叫文氏图、温氏图、韦恩图、范氏图,用于显示元素集合重叠区域的关系型图表,通过图形与图形之间的层叠关系,来反应数据集之间的相交关系。在R语言中,进行韦恩分析(Venn图绘制)可以通过多个不同的包来实现,常用的包括VennDiagram、venn和ggVenn等。本文案使用ggVen
- 在R语言中,要在图形中添加组间p值,可以使用`geom_bracket`函数
ByteWhisper
r语言python开发语言R语言
在R语言中,要在图形中添加组间p值,可以使用geom_bracket函数。geom_bracket函数可以用来创建一个带有括号标记的图形,用于表示组间的显著性差异。本文将详细介绍如何使用geom_bracket函数来添加组间p值,并提供相应的源代码示例。首先,我们需要安装并加载ggplot2包,因为geom_bracket函数是ggplot2包中的一部分。可以使用以下代码安装和加载ggplot2包
- R语言使用fs包的file_copy函数、dir_copy函数、link_copy函数将文件、目录、超链接从一个位置拷贝(copy)到另一个位置
statistics.insight
R语言入门课r语言数据挖掘机器学习开发语言
R语言使用fs包的file_copy函数、dir_copy函数、link_copy函数将文件、目录、超链接从一个位置拷贝(copy)到另一个位置目录R语言使用fs包的file_copy函数、dir_copy函数、link_copy函数将文件、目录、超链接从一个位置拷贝(copy)到另一个位置#包和库的安装、导入#R语言使用fs包的dir_ls函数列出指定文件夹下面的所有文件和文件夹(listfil
- R语言使用table1包绘制(生成)三线表实战:单变量分列构建三线表、使用render参数设置显示的统计量以及换行方式、使用topclass参数自定义设置显示网络和居中对齐
statistics.insight
R语言入门课r语言开发语言数据挖掘机器学习
R语言使用table1包绘制(生成)三线表实战:单变量分列构建三线表、使用render参数设置显示的统计量以及换行方式、使用topclass参数自定义设置显示网络和居中对齐目录R语言使用table1包绘制(生成)三线表、使用单变量分列构建三线表、使用render参数设置显示的统计量以及换行方式、使用topclass参数自定义设置显示网络和居中对齐#三线表是什么?#导入包并构建仿真数据#R语言使用t
- R语言广义加性模型:使用广义线性加性模型GAMs构建logistic回归
TechInk
r语言回归开发语言R语言
R语言广义加性模型:使用广义线性加性模型GAMs构建logistic回归在数据分析和建模领域,广义加性模型(GeneralizedAdditiveModels,简称GAMs)是一种常用的非参数统计方法。它结合了广义线性模型(GeneralizedLinearModels,简称GLMs)的灵活性和非线性关系的建模能力,可以适用于各种类型的响应变量,包括二元回归(logistic回归)。本文将介绍如何
- R语言广义加型模型(GAM)的运用例子及实现教程
Mrrunsen
R语言大学作业r语言开发语言
文章目录步骤1:加载所需包和数据步骤2:数据预处理步骤3:拟合广义加型模型步骤4:查看模型摘要和诊断模型摘要系数估计平滑项模型质量步骤5:预测和可视化结论广义加型模型(GeneralizedAdditiveModel,简称GAM)是一种灵活的非线性建模方法,在统计学和机器学习领域被广泛应用。GAM可以用于拟合非线性关系,适用于多个预测变量之间的复杂关系,并且可以处理连续和分类变量。本教程将向您展示
- 数据清洗与统计分析原理与代码实战案例讲解
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
《数据清洗与统计分析原理与代码实战案例讲解》关键词:数据清洗、统计分析、Python、R语言、数据预处理、数据分析、机器学习、大数据摘要:本文将深入探讨数据清洗与统计分析的原理,并通过丰富的实战案例展示如何在实际项目中应用这些技术。我们将详细讲解数据清洗的基本概念、流程和方法,以及统计分析的各种技术和应用。通过本文的学习,您将掌握数据清洗与统计分析的核心技能,提升数据处理和分析的能力,为后续的数据
- 2小时学懂【多元统计分析】——聚类分析(R语言)
木小鹿
多元统计R语言代码机器学习算法人工智能开发语言数据挖掘数据分析
聚类分析是一种无监督学习方法,用于将相似的观测值(或对象)分组到集群中。下面我将展示如何使用几种常见的聚类方法:K-均值(K-means)、层次聚类(HierarchicalClustering)和DBSCAN。1.K-均值聚类(K-meansClustering)K-均值是一种迭代的聚类算法,它将数据划分为K个预定义的集群。#加载需要的包library(cluster)#假设我们有一些二维数据s
- 【数据分析】R语言的广义线性混合模型(GLMM)分析案例
生信学习者1
数据分析数据分析r语言数据挖掘数据可视化
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍原理步骤加载R包数据下载导入数据数据预处理成对相关性GLMMs标准化数据字符向量转换成因子化变量构建模型FishesAmphibiansReptilesBirdsMammals画图总结系统信息介绍广义线性混合模型(GeneralizedLinearMixedModels,GLMM)是一种统计模型,用于分析具有非
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不