- C语言代码练习(第十九天)
小小框架
C语言C语言重点练习c语言
今日练习:52、有一个已经排好序的数组,要求输入一个数后,按原来排序的规律将它插入数组中53、输出"魔方阵"。所谓魔方阵是指它的每一行,每一列和对角线之和均相等。54、找出一个二维数组中的鞍点,即该位置上的元素在该行上最大、在该列上最小。也可能没有鞍点。有一个已经排好序的数组,要求输入一个数后,按原来排序的规律将它插入数组中运行代码intmain(){intarr[11]={1,3,9,12,15
- 实验7-2-8 找鞍点
发愤图强想做全栈的小陈
c初学者算法c语言c++
题目描述一个矩阵元素的"鞍点"是指该位置上的元素值在该行上最大、在该列上最小。本题要求编写程序,求一个给定的n阶方阵的鞍点。输入输入第一行给出一个正整数n(1≤n≤6)。随后n行,每行给出n个整数,其间以空格分隔。输出输出在一行中按照"行下标列下标"(下标从0开始)的格式输出鞍点的位置。如果鞍点不存在,则输出“NONE”。题目保证给出的矩阵至多存在一个鞍点。//本题笔者思路是再创一个数组且每个值为
- PTA-C语言 习题7-5 找鞍点 (20分)
只秃头不变强
PTA-C语言习题c语言
一个矩阵元素的“鞍点”是指该位置上的元素值在该行上最大、在该列上最小。本题要求编写程序,求一个给定的n阶方阵的鞍点。输入格式:输入第一行给出一个正整数n(1≤n≤6)。随后n行,每行给出n个整数,其间以空格分隔。输出格式:输出在一行中按照“行下标列下标”(下标从0开始)的格式输出鞍点的位置。如果鞍点不存在,则输出“NONE”。题目保证给出的矩阵至多存在一个鞍点。输入样例1:417414836161
- Datawhale X 李宏毅苹果书AI夏令营深度学习详解进阶Task02
z are
人工智能深度学习
目录一、自适应学习率二、学习率调度三、优化总结四、分类五、问题与解答本文了解到梯度下降是深度学习中最为基础的优化算法,其核心思想是沿着损失函数的梯度方向更新模型参数,以最小化损失值。公式如下:θt+1←θt-η*∇θL(θt)其中,θ表示模型参数,η表示学习率,L表示损失函数,∇θL表示损失函数关于参数的梯度。然而,梯度下降在复杂误差表面上存在局限性。例如,在鞍点或局部最小值处,梯度接近零,导致模
- 【学习笔记】第三章深度学习基础——Datawhale X李宏毅苹果书 AI夏令营
MoyiTech
人工智能学习笔记
局部极小值与鞍点梯度为0的点我们统称为临界点,包括局部极小值、鞍点等局部极小值和鞍点的梯度都为0,那如何判断呢?先请出我们损失函数:L(θ),θ是模型中的参数的取值,是一个向量。由于网络的复杂性,我们无法直接写出损失函数,不过我们可以写出损失函数的近似取值。根据宋浩老师所讲的大学一年级高等数学的知识,我们可以通过三阶泰勒展开对损失函数在θ附近的取值进行近似:其中,θ是模型中的参数的取值,θ’是在θ
- 局部极小值与鞍点 Datawhale X 李宏毅苹果书 AI夏令营
千740
人工智能深度学习机器学习
1,为什么随着参数的不断更新,损失无法降低?当参数对损失微分为零的时候,梯度下降就不能再更新参数了,训练就停下来了,损失不再下降了,此时梯度接近于0。我们把梯度为零的点统称为临界点(criticalpoint)。损失没有办法再下降,也许是因为收敛在了临界点,临界点包括局部极小值,局部极大值和鞍点(梯度是零且区别于局部极小值和局部极大值(localmaximum)的点)2,如果一个点的梯度接近于0,
- 24 优化算法
Unknown To Known
动手学习深度学习算法
目录优化和深度学习深度学习中的挑战局部最小vs全局最小鞍点(saddlepoint)梯度消失小结凸性(convexity)凸集凸函数(convexfunction)凸函数优化凸和非凸例子小结梯度下降(gradientdescent)1、梯度下降算法是最简单的迭代求解算法2、学习率(learningrate)小结随机梯度下降(stochasticgradientdescent)小结小批量随机梯度下降
- 机器学习中梯度下降法的缺点
华农DrLai
人工智能机器学习逻辑回归深度学习大数据
机器学习中的梯度下降法是一种寻找函数最小值的优化算法,广泛应用于训练各种模型,尤其是在深度学习中。尽管其应用广泛,但梯度下降法也存在一些不可忽视的缺点:1.局部最小值和鞍点局部最小值问题:对于非凸函数,梯度下降法可能会陷入局部最小值,而不是全局最小值。这意味着算法可能找到一个看似最优的点,但实际上在整个参数空间中存在更好的解。鞍点问题:在高维空间中,鞍点(梯度为零,但既非局部最小值也非局部最大值的
- 梯度下降法的神经网络容易收敛到局部最优,为什么应用广泛?
woshicver
神经网络算法机器学习人工智能深度学习
链接:https://www.zhihu.com/question/68109802编辑:深度学习与计算机视觉声明:仅做学术分享,侵删作者:夕小瑶https://www.zhihu.com/question/68109802/answer/263503269反对回答区中一部分称“模型收敛于鞍点”的回答。当然也有的大牛可以一针见血,那我就对这个问题多展开一下吧,让鲜血流的更猛烈一些。(害怕.jpg)
- 找二维数组鞍点
808bass542
算法数据结构
【问题描述】编写程序,找出一个4x5二维数组的鞍点,即该位置上的元素在该行上最大,在该列上最小(也可能没有鞍点)。【输入形式】根据系统提示,输入一个4x5二维数组。【输出形式】如果是鞍点输出这个点,如果不是鞍点输出“Itdoesnotexist!”。【样例输入】-341521232243891726-13482434235【样例输出】Pleaseentera4x5two-dimensionalar
- pytorch使用dataset和dataloader加载数据集
清明°
pytorch人工智能python
数据集:batch计算-》加快计算速度;single计算-》越过鞍点single可以得到更好的结果但是无法充分利用cpu的并行能力minibatch综合两者优势。epoch:一次所有数据参与训练;batch-size:每次参与训练的样本数量;interation:内层迭代的次数;batch的个数1.作用:加载数据集2.dataset:数据集支持索引抽象类,不能直接实例化,要创建类继承classMy
- 【泽宇读书会13】面对人生的"鞍点”,你选择下坡还是享受现在?
暴富的小青
1月14日开始阅读《升维:让你人生出众的另类通道》。这是上周去书店看到的一本书,之所以开始看,是因为随意翻阅看到了其中一些非常诡辩的论点,比如“拖延”是好事,基于好奇,打算看看他还有什么奇思妙想。本书分七章,每章根据不同主题筛选了生活中遍地可见的常规,说起来他很善于思考,但是看了两小节,都让我觉得作者纯属瞎扯。比如成功都是因为运气,因为1955年出生的比尔盖茨和乔布斯正是因为生而逢时,因为机遇而非
- 李宏毅机器学习——深度学习训练的技巧
migugu
神经网络训练的技巧优化失败的原因:局部最小值或鞍点,可以通过对H矩阵特征值正负性进行判断batch:加快梯度的计算,更新参数的速度比较快momentum:越过局部最小值或鞍点learningrate:自动调整学习率如RMSProp等normalizationdropout
- 计算鞍点(c++题解)
hb_zhyu
c++算法开发语言
题目描述给定一个的矩阵,每行只有一个最大值,每列只有一个最小值,寻找这个矩阵的鞍点。鞍点指的是矩阵中的一个元素,它是所在行的最大值,并且是所在列的最小值。例如:在下面的例子中(第4行第1列的元素就是鞍点,值为8)。11356912478101056911864721510112025输入格式输入包含一个行列的矩阵。输出格式如果存在鞍点,输出鞍点所在的行、列及其值,如果不存在,输出"notfound
- C语言(北京理工大学MOOC 上)
金色的省略号
Cc语言算法数据结构开发语言
1、矩阵的鞍点1#include2#defineN323intmain()4{5intm,n;6scanf("%d%d",&m,&n);78inta[N][N]={0};9for(inti=0;ia[rowPos][columnPos]){23rowPos=i;24columnPos=j;25}26}27//判断行最大值,在所在列是否为最小值28for(intk=0;k2#include3intm
- 【小笔记】算法基础超参数调优思路
落叶阳光
笔记算法机器学习深度学习
【学而不思则罔,思维不学则怠】9.29本文总结一下常见的一些超参数调优思路Batch_size2023.9.29简单来说,较大的bz可以加快训练速度,特别是基于GPU进行模型训练时,应该在显存允许范围内,尽量使用较大的bz。两个极端:假设内存/显存足够大,每次都是使用全量数据进行梯度计算,此时训练效率最高,但训练极容易陷入鞍点(局部最优)而无法跳出,表现出来就是loss还比较高,但是已经开始收敛了
- 深度学习学习笔记+知识点总结(4万字)
搬砖成就梦想
深度学习人工智能机器学习深度学习学习笔记
文章目录深度学习神经网络中的Epoch、Iteration、Batchsize反向传播(BP)CNN本质和优势鞍点的定义和特点?神经网络数据预处理方法有哪些?神经网络怎样进行参数初始化?卷积卷积的反向传播过程CNN模型所需的计算力(flops)和参数(parameters)数量是怎么计算的?池化(Pooling)池化层怎么接收后面传过来的损失?平均池化(averagepooling
- 找出二维数组所有所在行上的最小值与其坐标
Mickey_W
c++算法开发语言
以3*3矩阵为例【样例输入】123425356【样例输出】鞍点坐标:(0,0),值:1鞍点坐标:(1,1),值:2鞍点坐标:(2,0),值:3这段代码好理解一点#includeusingnamespacestd;intmain(){inta[3][3];inti,j,min,n;intn1=0,n2=0,n3=0;for(i=0;i>a[i][j];/*coutusingnamespacestd;
- C语言 查找二维数组的鞍点
牧童深巷
C语言c语言
出具有m行n列二维数组的“鞍点”,即该位置上的元素在该行上最大,在该列上最小,其中1intmain(){inta[10][10];inti,j,k,t,p,m,n;intmax,min;k=1;t=0;p=0;scanf("%d*%d",&m,&n);for(i=0;ia[k][t])//先定义该行最大的数为该列最小的数,看是否为鞍点{min=a[k][t];p=k;//将最小的行数赋值给p}}i
- 正定矩阵在格密码中的应用(知识铺垫)
唠嗑!
格密码密码学网络安全矩阵web安全
目录一.写在前面二.最小值点三.二次型结构四.正定与非正定讨论4.1对参数a的要求4.2对参数c的要求4.3对参数b的要求五.最小值,最大值与奇异值5.1正定型(positivedefinite)5.2负定型(negativedefinite)5.3奇异型六.鞍点(saddlepoint)七.矩阵二次型7.1介绍7.2举例例题1例题2例题3八.正定矩阵与格密码一.写在前面格密码中有时要求格基矩阵是
- 深度学习:鞍点以及如何跳出鞍点
Way_X
损失函数算法深度学习
最近阅读了有关鞍点得到文章,做了一下总结:鞍点的定义:鞍点(saddlepoint)的数学含义是:目标函数在此点上的梯度(一阶导数)值为0,但从该点出发的一个方向是函数的极大值点,而在另一个方向是函数的极小值点。而当在某点的一阶导为0时,该点称为驻点。判断鞍点的一个充分条件是:函数在一阶导数为零处(驻点)的Hessian矩阵为不定矩阵。半正定矩阵:所有特征值为非负,或主子式全部非负。半负定矩阵:所
- Tips for Training DNN
单调不减
DNN的整个步骤流程如图所示。NN和很多经典机器学习模型(如KNN、SVM)不同,它经过训练后在训练集上的表现未必会很好,这是因为它优化的损失函数是非凸的,训练停止时可能会停在局部最优点、鞍点或平坦点(即各个方向梯度都约等于零的点)。因此我们训练好一个网络后,要先检验它在训练集上的效果如何,若效果不好,则要修改训练方法重新训练,若效果较好,则我们再观察在测试集上的效果,若效果不好,说明模型过拟合,
- CGAL的三角网格曲面脊线和脐点的近似计算(需要微分几何学的知识)
网卡了
CGAL几何学3d算法
脊线(Ridges):在光滑曲面上,脊线是一种特殊的曲线。沿着这条曲线,曲面的一个主曲率在其曲率线上达到极值(最大或最小)。这意味着脊线是那些曲率发生突变的区域,它们在形状感知、物体识别和计算机图形学中都有重要的应用。脐点(Umbilics):脐点是光滑曲面上的一个特殊点,在该点上,曲面的两个主曲率相等。在脐点处,曲面的形状局部类似于一个球体或鞍点。脐点在曲面分析和计算机图形学中也很重要,因为它们
- 模型优化方法
alstonlou
人工智能
在构建完模型后,通过一下几种步骤进行模型优化训练过程优化器随机梯度下降(SGD)优点:(1)每次只用一个样本更新模型参数,训练速度快(2)随机梯度下降所带来的波动有利于优化的方向从当前的局部极小值点跳到另一个更好的局部极小值点,这样对于非凸函数,最终收敛于一个较好的局部极值点,甚至全局极值点。缺点:(1)当遇到局部最优点或鞍点时,梯度为0,无法继续更新参数(2)沿陡峭方向震荡,而沿平缓维度进展缓慢
- 《Python》在一行中按照“行下标列下标”(下标从0开始)的格式输出点的位置。如果鞍点不存在,则输出“NONE”
北有青空
python开发语言
在一行中按照"行下标列下标”(下标从0开始)的格式输出点的位置。如果鞍点不存在,则输出“NONE”#输入n=int(input("请输入行数"))my_list=[]#先创建一个列表foriinrange(n):#将输入到一行数据按空格分割成多个字符串,然后通过map(int,...)将字符串转为整数,再用list(),将整数列表赋值给行xx=list(map(int,input().split(
- PTA找鞍点(C语言)
Nanlu_O
c语言
题意:一个矩阵元素的“鞍点”是指该位置上的元素值在该行上最大、在该列上最小。本题要求编写程序,求一个给定的n阶方阵的鞍点。输入格式:输入第一行给出一个正整数n(1≤n≤6)。随后n行,每行给出n个整数,其间以空格分隔。输出格式:输出在一行中按照“行下标列下标”(下标从0开始)的格式输出鞍点的位置。如果鞍点不存在,则输出“NONE”。题目保证给出的矩阵至多存在一个鞍点。输入样例1:417414836
- 对偶问题笔记(1)
碧蓝的天空丶
笔记数值计算
目录1从Lagrange函数引入对偶问题2.强对偶性与KKT条件3.对偶性的鞍点特征1从Lagrange函数引入对偶问题考虑如下优化问题{minf0(x)s.tfi(x)≤0,i=1,⋯ ,p,hj(x)=0,j=1,⋯ ,q,x∈Ω,\begin{align}\begin{cases}\minf_0(x)\\\mathrm{s.t}\quadf_i(x)\leq0,\quadi=1,\cdot
- 深度学习之网络优化与正则化
__如果
深度学习人工智能
视频链接:7.1神经网络优化的特点_哔哩哔哩_bilibili神经网络优化的特点网络优化的难点(1)网络结构差异大:不同模型之间的结构差异大——没有通用的优化算法、超参数多(2)非凸优化问题:导致得到的最优解可能是全局最优解——参数如何初始化、如何逃离局部最优或鞍点(3)梯度消失和爆炸问题:当网络非常深时,靠下的层的参数的梯度要么接近0,要么非常大,十分难优化高维空间中的非凸优化问题低维空间中的非
- 找鞍点(PTA)
wx20041102
算法数据结构
先找出每一行的max,然后在判断这个数是不是这一列的min#includeintmain(){inti=0;inti1=0;intj1=0;intk=0;intj=0;intarr[6][6]={0};intn=0;inti2=0;intmax=0;intmin=0;scanf("%d",&n);for(i=0;i=arr[k][j1]){min=arr[k][j1];i2=k;}}if(i2==
- c语言详解牛顿迭代法以及求解倒数和平方根
发狂的小花
高性能算法开发优化人工智能算法机器学习
Newton'siterationmethod是在实数域和复数域利用切线不断逼近方程根的一种求高次曲线方程的方法,区别于梯度下降法,它是二阶导,收敛速度比较快,对于非凸函数,牛顿法容易受到鞍点或者最大值点的吸引。由于牛顿迭代法是局部收敛,初始值选取不当的话,很容易无法收敛。目录1基本介绍2公式推导3牛顿迭代法的应用3.1求倒数3.2开根号3.2马克尔的方法4收敛性分析1基本介绍牛顿迭代法(Newt
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla