第一章deeplabv3+源码之慢慢解析 根目录(1)main.py–get_argparser函数
第一章deeplabv3+源码之慢慢解析 根目录(2)main.py–get_dataset函数
第一章deeplabv3+源码之慢慢解析 根目录(3)main.py–validate函数
第一章deeplabv3+源码之慢慢解析 根目录(4)main.py–main函数
第一章deeplabv3+源码之慢慢解析 根目录(5)predict.py–get_argparser函数和main函数
第二章deeplabv3+源码之慢慢解析 datasets文件夹(1)voc.py–voc_cmap函数和download_extract函数
第二章deeplabv3+源码之慢慢解析 datasets文件夹(2)voc.py–VOCSegmentation类
第二章deeplabv3+源码之慢慢解析 datasets文件夹(3)cityscapes.py–Cityscapes类
第二章deeplabv3+源码之慢慢解析 datasets文件夹(4)utils.py–6个小函数
第三章deeplabv3+源码之慢慢解析 metrics文件夹stream_metrics.py–StreamSegMetrics类和AverageMeter类
第四章deeplabv3+源码之慢慢解析 network文件夹(1)backbone文件夹(a1)hrnetv2.py–4个函数和可执行代码
第四章deeplabv3+源码之慢慢解析 network文件夹(1)backbone文件夹(a2)hrnetv2.py–Bottleneck类和BasicBlock类
第四章deeplabv3+源码之慢慢解析 network文件夹(1)backbone文件夹(a3)hrnetv2.py–StageModule类
第四章deeplabv3+源码之慢慢解析 network文件夹(1)backbone文件夹(a4)hrnetv2.py–HRNet类
第四章deeplabv3+源码之慢慢解析 network文件夹(1)backbone文件夹(b1)mobilenetv2.py–2个类和2个函数
第四章deeplabv3+源码之慢慢解析 network文件夹(1)backbone文件夹(b2)mobilenetv2.py–MobileNetV2类和mobilenet_v2函数
第四章deeplabv3+源码之慢慢解析 network文件夹(1)backbone文件夹(c1)resnet.py–2个基础函数,BasicBlock类和Bottleneck类
第四章deeplabv3+源码之慢慢解析 network文件夹(1)backbone文件夹(c2)resnet.py–ResNet类和10个不同结构的调用函数
第四章deeplabv3+源码之慢慢解析 network文件夹(1)backbone文件夹(d1)xception.py–SeparableConv2d类和Block类
第四章deeplabv3+源码之慢慢解析 network文件夹(1)backbone文件夹(d2)xception.py–Xception类和xception函数
第四章deeplabv3+源码之慢慢解析 network文件夹(2)_deeplab.py–ASPP相关的4个类和1个函数
第四章deeplabv3+源码之慢慢解析 network文件夹(3)_deeplab.py–DeepLabV3类,DeepLabHeadV3Plus类和DeepLabHead类
第四章deeplabv3+源码之慢慢解析 network文件夹(4)modeling.py–5个私有函数(4个骨干网,1个模型载入)
第四章deeplabv3+源码之慢慢解析 network文件夹(5)modeling.py–12个调用函数
第四章deeplabv3+源码之慢慢解析 network文件夹(6)utils.py–_SimpleSegmentationModel类和IntermediateLayerGetter类
第五章deeplabv3+源码之慢慢解析 utils文件夹(1)ext_transforms.py.py–[17个类]
第五章deeplabv3+源码之慢慢解析 utils文件夹(2)loss.py–[1个类]
第五章deeplabv3+源码之慢慢解析 utils文件夹(3)scheduler.py–[1个类]
第五章deeplabv3+源码之慢慢解析 utils文件夹(4)utils.py–[1个类,4个函数]
第五章deeplabv3+源码之慢慢解析 utils文件夹(5)visualizer.py–[1个类]
总结
提示:源码众多,此次选这个版本pytorch版
提示:本章讲解的是总体结构如下datasets文件夹下的内容。
#从两个文件模块导入了两个类,后文有详细说明
from .voc import VOCSegmentation
from .cityscapes import Cityscapes
#都是基本操作
import os
import sys
import tarfile
import collections
import torch.utils.data as data
import shutil
import numpy as np
from PIL import Image
from torchvision.datasets.utils import download_url, check_integrity
字典部分就是列举了数据集每个年份的下载链接url,文件名filename,校验码md5,和对应的目录路径base_dir。
DATASET_YEAR_DICT = {
'2012': {
'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar',
'filename': 'VOCtrainval_11-May-2012.tar',
'md5': '6cd6e144f989b92b3379bac3b3de84fd',
'base_dir': 'VOCdevkit/VOC2012'
},
'2011': {
'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2011/VOCtrainval_25-May-2011.tar',
'filename': 'VOCtrainval_25-May-2011.tar',
'md5': '6c3384ef61512963050cb5d687e5bf1e',
'base_dir': 'TrainVal/VOCdevkit/VOC2011'
},
'2010': {
'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar',
'filename': 'VOCtrainval_03-May-2010.tar',
'md5': 'da459979d0c395079b5c75ee67908abb',
'base_dir': 'VOCdevkit/VOC2010'
},
'2009': {
'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2009/VOCtrainval_11-May-2009.tar',
'filename': 'VOCtrainval_11-May-2009.tar',
'md5': '59065e4b188729180974ef6572f6a212',
'base_dir': 'VOCdevkit/VOC2009'
},
'2008': {
'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2008/VOCtrainval_14-Jul-2008.tar',
'filename': 'VOCtrainval_11-May-2012.tar',
'md5': '2629fa636546599198acfcfbfcf1904a',
'base_dir': 'VOCdevkit/VOC2008'
},
'2007': {
'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar',
'filename': 'VOCtrainval_06-Nov-2007.tar',
'md5': 'c52e279531787c972589f7e41ab4ae64',
'base_dir': 'VOCdevkit/VOC2007'
}
}
提示:新手注意:这个函数是处理VOC数据集特有的,自己的数据集不一定要使用,对比cityscape数据集就没有。此处结果大小返回有256个,只用到前21个对应VOC数据集的21个标注类,其他的为未标注。后附补充链接。
def voc_cmap(N=256, normalized=False):
def bitget(byteval, idx):
return ((byteval & (1 << idx)) != 0) #后补链接。1<
dtype = 'float32' if normalized else 'uint8'
cmap = np.zeros((N, 3), dtype=dtype)
for i in range(N): #N=256,即0-255
r = g = b = 0
c = i
for j in range(8):
r = r | (bitget(c, 0) << 7-j) #单纯的计算,如第一个循环bitget(0, 0)=False,False<<7得到0,0|0得到0。经过8次循环得到一个r的数值。
g = g | (bitget(c, 1) << 7-j) #同上过程,经过8次循环得到一个g的数值。
b = b | (bitget(c, 2) << 7-j) #同上过程,经过8次循环得到一个b的数值。
c = c >> 3 #右移3位,即除以8.
cmap[i] = np.array([r, g, b]) #经过256次循环得到一个cmap数组。这个数组的值是固定的,需要的话,可以单独输出看一下。但其中只有前21个对应VOC数据集的21个颜色(即21个类)。
cmap = cmap/255 if normalized else cmap
return cmap
提示:此函数位于文件末尾,就是数据的下载校验和解压缩。
def download_extract(url, root, filename, md5): #按url下载,MD5校验
download_url(url, root, filename, md5) #download_url来自torchvision.datasets.utils,导入的最后一行。
with tarfile.open(os.path.join(root, filename), "r") as tar: #tar文件解压缩
tar.extractall(path=root)
Tips
补python中的左移<<和右移>>运算
补VOC数据集21个类,21种颜色说明。
下一节是VOC数据集最重要的VOCSegmentation类。