Apache Doris 入门教程27:BITMAP精准去重和HLL近似去重

BITMAP 精准去重

背景​

Doris原有的Bitmap聚合函数设计比较通用,但对亿级别以上bitmap大基数的交并集计算性能较差。排查后端be的bitmap聚合函数逻辑,发现主要有两个原因。一是当bitmap基数较大时,如bitmap大小超过1g,网络/磁盘IO处理时间比较长;二是后端be实例在scan数据后全部传输到顶层节点进行求交和并运算,给顶层单节点带来压力,成为处理瓶颈。

解决思路是将bitmap列的值按照range划分,不同range的值存储在不同的分桶中,保证了不同分桶的bitmap值是正交的。当查询时,先分别对不同分桶中的正交bitmap进行聚合计算,然后顶层节点直接将聚合计算后的值合并汇总,并输出。如此会大大提高计算效率,解决了顶层单节点计算瓶颈问题。

使用指南​

  1. 建表,增加hid列,表示bitmap列值id范围, 作为hash分桶列
  2. 使用场景

Create table​

建表时需要使用聚合模型,数据类型是 bitmap , 聚合函数是 bitmap_union

CREATE TABLE `user_tag_bitmap` (
  `tag` bigint(20) NULL COMMENT "用户标签",
  `hid` smallint(6) NULL COMMENT "分桶id",
  `user_id` bitmap BITMAP_UNION NULL COMMENT ""
) ENGINE=OLAP
AGGREGATE KEY(`tag`, `hid`)
COMMENT "OLAP"
DISTRIBUTED BY HASH(`hid`) BUCKETS 3

表schema增加hid列,表示id范围, 作为hash分桶列。

注:hid数和BUCKETS要设置合理,hid数设置至少是BUCKETS的5倍以上,以使数据hash分桶尽量均衡

Data Load​

LOAD LABEL user_tag_bitmap_test
(
DATA INFILE('hdfs://abc')
INTO TABLE user_tag_bitmap
COLUMNS TERMINATED BY ','
(tmp_tag, tmp_user_id)
SET (
tag = tmp_tag,
hid = ceil(tmp_user_id/5000000),
user_id = to_bitmap(tmp_user_id)
)
)
注意:5000000这个数不固定,可按需调整
...

数据格式:

11111111,1
11111112,2
11111113,3
11111114,4
...

注:第一列代表用户标签,由中文转换成数字

load数据时,对用户bitmap值range范围纵向切割,例如,用户id在1-5000000范围内的hid值相同,hid值相同的行会分配到一个分桶内,如此每个分桶内到的bitmap都是正交的。可以利用桶内bitmap值正交特性,进行交并集计算,计算结果会被shuffle至top节点聚合。

注:正交bitmap函数不能用在分区表,因为分区表分区内正交,分区之间的数据是无法保证正交的,则计算结果也是无法预估的。

bitmap_orthogonal_intersect​

求bitmap交集函数

语法:

orthogonal_bitmap_intersect(bitmap_column, column_to_filter, filter_values)

参数:

第一个参数是Bitmap列,第二个参数是用来过滤的维度列,第三个参数是变长参数,含义是过滤维度列的不同取值

说明:

查询规划上聚合分2层,在第一层be节点(update、serialize)先按filter_values为key进行hash聚合,然后对所有key的bitmap求交集,结果序列化后发送至第二层be节点(merge、finalize),在第二层be节点对所有来源于第一层节点的bitmap值循环求并集

样例:

select BITMAP_COUNT(orthogonal_bitmap_intersect(user_id, tag, 13080800, 11110200)) from user_tag_bitmap  where tag in (13080800, 11110200);

orthogonal_bitmap_intersect_count​

求bitmap交集count函数,语法同原版intersect_count,但实现不同

语法:

orthogonal_bitmap_intersect_count(bitmap_column, column_to_filter, filter_values)

参数:

第一个参数是Bitmap列,第二个参数是用来过滤的维度列,第三个参数开始是变长参数,含义是过滤维度列的不同取值

说明:

查询规划聚合上分2层,在第一层be节点(update、serialize)先按filter_values为key进行hash聚合,然后对所有key的bitmap求交集,再对交集结果求count,count值序列化后发送至第二层be节点(merge、finalize),在第二层be节点对所有来源于第一层节点的count值循环求sum

orthogonal_bitmap_union_count​

求bitmap并集count函数,语法同原版bitmap_union_count,但实现不同。

语法:

orthogonal_bitmap_union_count(bitmap_column)

参数:

参数类型是bitmap,是待求并集count的列

说明:

查询规划上分2层,在第一层be节点(update、serialize)对所有bitmap求并集,再对并集的结果bitmap求count,count值序列化后发送至第二层be节点(merge、finalize),在第二层be节点对所有来源于第一层节点的count值循环求sum

orthogonal_bitmap_expr_calculate​

求表达式bitmap交并差集合计算函数。

语法:

orthogonal_bitmap_expr_calculate(bitmap_column, filter_column, input_string)

参数:

第一个参数是Bitmap列,第二个参数是用来过滤的维度列,即计算的key列,第三个参数是计算表达式字符串,含义是依据key列进行bitmap交并差集表达式计算

表达式支持的计算符:& 代表交集计算,| 代表并集计算,- 代表差集计算, ^ 代表异或计算,\ 代表转义字符

说明:

查询规划上聚合分2层,第一层be聚合节点计算包括init、update、serialize步骤,第二层be聚合节点计算包括merge、finalize步骤。在第一层be节点,init阶段解析input_string字符串,转换为后缀表达式(逆波兰式),解析出计算key值,并在map结构中初始化;update阶段,底层内核scan维度列(filter_column)数据后回调update函数,然后以计算key为单位对上一步的map结构中的bitmap进行聚合;serialize阶段,根据后缀表达式,解析出计算key列的bitmap,利用栈结构先进后出原则,进行bitmap交并差集合计算,然后对最终的结果bitmap序列化后发送至第二层聚合be节点。在第二层聚合be节点,对所有来源于第一层节点的bitmap值求并集,并返回最终bitmap结果

orthogonal_bitmap_expr_calculate_count​

求表达式bitmap交并差集合计算count函数, 语法和参数同orthogonal_bitmap_expr_calculate。

语法:

orthogonal_bitmap_expr_calculate_count(bitmap_column, filter_column, input_string)

说明:

查询规划上聚合分2层,第一层be聚合节点计算包括init、update、serialize步骤,第二层be聚合节点计算包括merge、finalize步骤。在第一层be节点,init阶段解析input_string字符串,转换为后缀表达式(逆波兰式),解析出计算key值,并在map结构中初始化;update阶段,底层内核scan维度列(filter_column)数据后回调update函数,然后以计算key为单位对上一步的map结构中的bitmap进行聚合;serialize阶段,根据后缀表达式,解析出计算key列的bitmap,利用栈结构先进后出原则,进行bitmap交并差集合计算,然后对最终的结果bitmap的count值序列化后发送至第二层聚合be节点。在第二层聚合be节点,对所有来源于第一层节点的count值求加和,并返回最终count结果。

使用场景​

符合对bitmap进行正交计算的场景,如在用户行为分析中,计算留存,漏斗,用户画像等。

人群圈选:

 select orthogonal_bitmap_intersect_count(user_id, tag, 13080800, 11110200) from user_tag_bitmap where tag in (13080800, 11110200);
 注:13080800、11110200代表用户标签

计算user_id的去重值:

select orthogonal_bitmap_union_count(user_id) from user_tag_bitmap where tag in (13080800, 11110200);

bitmap交并差集合混合计算:

select orthogonal_bitmap_expr_calculate_count(user_id, tag, '(833736|999777)&(1308083|231207)&(1000|20000-30000)') from user_tag_bitmap where tag in (833736,999777,130808,231207,1000,20000,30000);
注:1000、20000、30000等整形tag,代表用户不同标签

select orthogonal_bitmap_expr_calculate_count(user_id, tag, '(A:a/b|B:2\\-4)&(C:1-D:12)&E:23') from user_str_tag_bitmap where tag in ('A:a/b', 'B:2-4', 'C:1', 'D:12', 'E:23');
 注:'A:a/b', 'B:2-4'等是字符串类型tag,代表用户不同标签, 其中'B:2-4'需要转义成'B:2\\-4'

使用 HLL 近似去重

HLL 近似去重​

在实际的业务场景中,随着业务数据量越来越大,对数据去重的压力也越来越大,当数据达到一定规模之后,使用精准去重的成本也越来越高,在业务可以接受的情况下,通过近似算法来实现快速去重降低计算压力是一个非常好的方式,本文主要介绍 Doris 提供的 HyperLogLog(简称 HLL)是一种近似去重算法。

HLL 的特点是具有非常优异的空间复杂度 O(mloglogn) , 时间复杂度为 O(n), 并且计算结果的误差可控制在 1%—2% 左右,误差与数据集大小以及所采用的哈希函数有关。

什么是 HyperLogLog​

它是 LogLog 算法的升级版,作用是能够提供不精确的去重计数。其数学基础为伯努利试验

假设硬币拥有正反两面,一次的上抛至落下,最终出现正反面的概率都是50%。一直抛硬币,直到它出现正面为止,我们记录为一次完整的试验。

那么对于多次的伯努利试验,假设这个多次为n次。就意味着出现了n次的正面。假设每次伯努利试验所经历了的抛掷次数为k。第一次伯努利试验,次数设为k1,以此类推,第n次对应的是kn。

其中,对于这n次伯努利试验中,必然会有一个最大的抛掷次数k,例如抛了12次才出现正面,那么称这个为k_max,代表抛了最多的次数。

伯努利试验容易得出有以下结论:

  • n 次伯努利过程的投掷次数都不大于 k_max。
  • n 次伯努利过程,至少有一次投掷次数等于 k_max

最终结合极大似然估算的方法,发现在n和k_max中存在估算关联:n = 2 ^ k_max。当我们只记录了k_max时,即可估算总共有多少条数据,也就是基数。

假设试验结果如下:

  • 第1次试验: 抛了3次才出现正面,此时 k=3,n=1
  • 第2次试验: 抛了2次才出现正面,此时 k=2,n=2
  • 第3次试验: 抛了6次才出现正面,此时 k=6,n=3
  • 第n次试验:抛了12次才出现正面,此时我们估算, n = 2^12

取上面例子中前三组试验,那么 k_max = 6,最终 n=3,我们放进估算公式中去,明显: 3 ≠ 2^6 。也即是说,当试验次数很小的时候,这种估算方法的误差是很大的。

这三组试验,我们称为一轮的估算。如果只是进行一轮的话,当 n 足够大的时候,估算的误差率会相对减少,但仍然不够小。

Doris HLL 函数​

HLL 是基于 HyperLogLog 算法的工程实现,用于保存 HyperLogLog 计算过程的中间结果,它只能作为表的 value 列类型、通过聚合来不断的减少数据量,以此

来实现加快查询的目的,基于它得到的是一个估算结果,误差大概在1%左右,hll 列是通过其它列或者导入数据里面的数据生成的,导入的时候通过 hll_hash 函数

来指定数据中哪一列用于生成 hll 列,它常用于替代 count distinct,通过结合 rollup 在业务上用于快速计算uv等

HLL_UNION_AGG(hll)

此函数为聚合函数,用于计算满足条件的所有数据的基数估算。

HLL_CARDINALITY(hll)

此函数用于计算单条hll列的基数估算

HLL_HASH(column_name)

生成HLL列类型,用于insert或导入的时候,导入的使用见相关说明

如何使用 Doris HLL​

  1. 使用 HLL 去重的时候,需要在建表语句中将目标列类型设置成HLL,聚合函数设置成HLL_UNION
  2. HLL类型的列不能作为 Key 列使用
  3. 用户不需要指定长度及默认值,长度根据数据聚合程度系统内控制

创建一张含有 hll 列的表​

create table test_hll(
    dt date,
    id int,
    name char(10),
    province char(10),
    os char(10),
    pv hll hll_union
)
Aggregate KEY (dt,id,name,province,os)
distributed by hash(id) buckets 10
PROPERTIES(
    "replication_num" = "1",
    "in_memory"="false"
);

导入数据​

  1. Stream load 导入

    curl --location-trusted -u root: -H "label:label_test_hll_load" \
        -H "column_separator:," \
        -H "columns:dt,id,name,province,os, pv=hll_hash(id)" -T test_hll.csv http://fe_IP:8030/api/demo/test_hll/_stream_load
    

    示例数据如下(test_hll.csv):

    2022-05-05,10001,测试01,北京,windows
    2022-05-05,10002,测试01,北京,linux
    2022-05-05,10003,测试01,北京,macos
    2022-05-05,10004,测试01,河北,windows
    2022-05-06,10001,测试01,上海,windows
    2022-05-06,10002,测试01,上海,linux
    2022-05-06,10003,测试01,江苏,macos
    2022-05-06,10004,测试01,陕西,windows
    

    导入结果如下

    # curl --location-trusted -u root: -H "label:label_test_hll_load"     -H "column_separator:,"     -H "columns:dt,id,name,province,os, pv=hll_hash(id)" -T test_hll.csv http://127.0.0.1:8030/api/demo/test_hll/_stream_load
    
    {
        "TxnId": 693,
        "Label": "label_test_hll_load",
        "TwoPhaseCommit": "false",
        "Status": "Success",
        "Message": "OK",
        "NumberTotalRows": 8,
        "NumberLoadedRows": 8,
        "NumberFilteredRows": 0,
        "NumberUnselectedRows": 0,
        "LoadBytes": 320,
        "LoadTimeMs": 23,
        "BeginTxnTimeMs": 0,
        "StreamLoadPutTimeMs": 1,
        "ReadDataTimeMs": 0,
        "WriteDataTimeMs": 9,
        "CommitAndPublishTimeMs": 11
    }
    

  2. Broker Load

LOAD LABEL demo.test_hlllabel
 (
    DATA INFILE("hdfs://hdfs_host:hdfs_port/user/doris_test_hll/data/input/file")
    INTO TABLE `test_hll`
    COLUMNS TERMINATED BY ","
    (dt,id,name,province,os)
    SET (
      pv = HLL_HASH(id)
    )
 );

查询数据​

HLL 列不允许直接查询原始值,只能通过 HLL 的聚合函数进行查询。

  1. 求总的PV

    mysql> select HLL_UNION_AGG(pv) from test_hll;
    +---------------------+
    | hll_union_agg(`pv`) |
    +---------------------+
    |                   4 |
    +---------------------+
    1 row in set (0.00 sec)
    

    等价于:

    mysql> SELECT COUNT(DISTINCT pv) FROM test_hll;
    +----------------------+
    | count(DISTINCT `pv`) |
    +----------------------+
    |                    4 |
    +----------------------+
    1 row in set (0.01 sec)
    

  2. 求每一天的PV

    mysql> select HLL_UNION_AGG(pv) from test_hll group by dt;
    +---------------------+
    | hll_union_agg(`pv`) |
    +---------------------+
    |                   4 |
    |                   4 |
    +---------------------+
    2 rows in set (0.01 sec)

你可能感兴趣的:(大数据,数据库,数据仓库,database,数据分析)