确实,对于这种核心业务流程,特别是涉及到运营商级的集成,我们还可以考虑以下更加精细化或者更加完善的方案:
熔断器模式:
回退策略:
优先级队列:
反压力策略:
消息确认与检查:
业务流控:
动态配置与切换:
最后,不论选择哪种策略,都应该进行充分的测试,模拟各种可能的失败情况,确保系统在真实环境中能够稳健地运行。
我回答的是:redis端先预减库存,然后再使用一个MQ,这个MQ专门用来存放用户的购买逻辑,每当MQ满了就一次性发送到 MySQL 中进行数据的落库
答:在面试官的提示下,我答的是将商品库存数据拆分,比如对于同一个商品,每一个地区都插入一个库存数据,比如A商品,库存记录中有上海的库存记录,有北京的库存记录,这样南方的用户选择扣上海的库存,北方的用户扣北京的库存,这样虽然是同一件商品,但是由于是两条库存记录,因此能够分担并发的压力
您的答案是一个很好的策略,也即是说,通过对库存进行地理区域的分拆,有效地降低了单一记录上的锁竞争。这种方法的关键在于将热点数据进行细分,以达到负载均衡的效果。
降低锁的竞争:如您所说,不同的地理区域可以操作不同的库存记录,从而减少对同一个库存记录的并发访问。
提高响应速度:由于锁的竞争减少,用户可以更快地得到响应。
更好的扩展性:当某个地区的用户增多时,可以进一步地细分该地区的库存,例如,将北京细分为东城、西城等。
实时库存管理:对于电商平台来说,这种方法还可以实时地调整库存,例如,当上海的库存不足,而北京的库存充足时,可以考虑从北京调拨库存到上海。
数据管理复杂性增加:需要为每个地区管理库存数据,这可能导致数据管理变得更加复杂。
库存同步问题:例如,如何确保当商品从一个地区调拨到另一个地区时,库存数据正确无误?
用户体验问题:如果用户想要购买的数量超过了他所在地区的库存,但在其他地区还有充足的库存,如何处理?
总之,通过对库存进行地理区域的分拆是一个很好的策略来降低锁的竞争,但同时也需要考虑到上述的潜在问题,并为其提供解决方案。
对,您提到的这种策略也是可行的,通过将库存分成多个组,并在每个组上设定相同的库存数,请求来临时可以进行负载均衡。这种方式的好处是减少了锁竞争,提高了系统的并发能力。不过在实施该策略时需要考虑以下几点:
库存划分与合并:将库存分成多个组后,需要在每个组上设定相同的库存数。同时,需要设计合适的机制以便在某个组的库存不足时可以及时合并其他组的库存,避免因某个组的库存不足而导致库存的浪费。
库存同步:在高并发场景下,每个组的库存会被多个线程同时访问和修改。需要确保各个线程对库存的访问和修改都能够正确同步。
负载均衡算法:需要选择适合的负载均衡算法来分配请求到各个库存组。这里可以选择简单的轮询、随机等算法,或者更复杂的基于权重的负载均衡算法。
数据一致性:如果库存数据存储在多个数据库中,需要考虑数据一致性的问题。这里可以使用两阶段提交、最终一致性等方法来保证数据一致性。
这种策略可以有效地降低锁竞争,提高系统的并发能力。但在实施该策略时需要充分考虑上述问题,并根据实际情况进行优化和调整。
在 RabbitMQ 中,有几种方式可以确保消息不会丢失:
持久化队列:
channel.queueDeclare("queue-name", true, false, false, null);
消息持久化:
channel.basicPublish("", "queue-name", MessageProperties.PERSISTENT_TEXT_PLAIN, "message".getBytes());
发送方确认机制:
channel.confirmSelect();
接收方确认机制:
channel.basicAck(deliveryTag, false);
集群部署与镜像队列:
需要注意的是,上述方法可能会影响 RabbitMQ 的性能。例如,开启消息持久化和确认机制会增加 RabbitMQ 的 IO 操作和网络传输。因此,在选择适当的方式来确保消息不丢失时,需要根据具体的应用场景和性能要求来权衡。
大佬们请教个问题,现在有个场景需要统计每个设备的日活信息,设备的编号采用的是雪花ID的方式,目前想采用Redis的Bitmap的方式进行数据存储,但是有个问题是,假如1号那天有个设备上线了计算出偏移量为1将bitmap的指定的位设置了1,然后又有一个设备的id计算出的偏移量超过了Bitmap的最大限制,导致redis直接开辟了512M的内存,如何防止偏移量过大呢?还有假如一个设备计算出的偏移量是1,另外一个设备计算出的偏移量为100000,实际1号那天只有2个设备上线,那么2-99999就属于无效的空间导致内存的浪费,这种有什么方式可以解决?我知道的有谷歌的EWAHCompressedBitmap可以进行压缩,但是这个只能用在单实例上
给一下我的思路:假设用一个序号标识设备id在原来bitMap中的顺序,现在将这个id的前x位当做bitMAp的标识,后y位作为他在第i个bitmap中的位置,然后采用懒加载策略,只有当这个设备用到时才创建这个设备所在的bitMap,这样应对极端情况。
比如现在有100个设备id,编号是0-99,需要用大小为100bit的bitMap存储,假设现在将其分为20个bitMap,每一个bitMap只负责统计5个设备的活跃信息,假如某一天只有第1号和第99号设备上线,那么只需要创建第0号和第19号这两个bitMap,总共花费的内存是10bit;计算过程以id为99的设备为例:该设备在第99/5=19个bitMap上的索引为99%5=4的bit位上被标记
一定要统计所有设备的日活吗,设备能不能分组,然后统计每一个设备组的活跃信息,这样也能压缩空间了
Roaring Bitmap是一种高效的Bitmap实现,比传统的Bitmap更加紧凑,适用于大量数据的情况。它在许多场景下都表现得相当出色,比如在大数据、数据仓库、搜索引擎等场景中。Roaring Bitmap的核心思想是将Bitmap分割成多个容器,根据容器中1的数量采用不同的数据结构进行存储,从而节省空间。
Roaring Bitmap的特点包括:
高效的存储:通过智能地选择数据结构,Roaring Bitmap可以高效地存储数据。比如,当一个容器中的1非常稠密时,Roaring Bitmap会选择一种紧凑的数据结构进行存储,从而节省空间。
快速的操作:Roaring Bitmap提供了一系列快速的操作,比如位的并集、交集、差集、翻转等。这些操作都是高度优化的,可以在很短的时间内完成。
广泛的应用:由于其高效和灵活性,Roaring Bitmap在许多场景下都非常适用。比如在大数据分析、数据仓库、实时数据流处理、搜索引擎等场景中都有广泛应用。
Roaring Bitmap的工作原理如下:
将Bitmap分割成多个容器:Roaring Bitmap将64位的Bitmap分割成多个16位的容器。每个容器都包含65536个位。
根据容器中1的数量采用不同的数据结构:Roaring Bitmap会根据容器中1的数量选择不同的数据结构进行存储。比如,当一个容器中的1非常稀疏时,Roaring Bitmap会选择一种称为"Array"的数据结构进行存储;当一个容器中的1非常稠密时,Roaring Bitmap会选择一种称为"Bitmap"的数据结构进行存储;当一个容器中的1非常集中时,Roaring Bitmap会选择一种称为"Run"的数据结构进行存储。
动态切换数据结构:随着数据的变化,Roaring Bitmap会动态地切换数据结构。比如,当一个容器中的1变得更加稠密时,Roaring Bitmap会从"Array"切换到"Bitmap"。
总之,Roaring Bitmap是一种非常高效和灵活的Bitmap实现,适用于大量数据的场景。它不仅可以高效地存储数据,而且还提供了一系列快速的操作,可以满足各种需求。
Roaring Bitmap是由Daniel Lemire、Owen Kaser、Nathan Kurz等人共同推出的。Daniel Lemire是该技术的主要发起人和贡献者之一,他是加拿大蒙特利尔大学(University of Montreal)的一位教授,同时也是一个活跃的开源软件开发者。
"Run"数据结构并没有在Java的RoaringBitmap库中以单独的类的形式存在,而是作为RoaringBitmap的一部分实现的。这种数据结构最适合在连续的位上表示1。但是我可以用一个简单的Java代码来说明如何表示和操作"Run"结构。
public class Run {
private int start; // 起始位置
private int length; // 长度
public Run(int start, int length) {
this.start = start;
this.length = length;
}
// 检查一个值是否在这个Run范围内
public boolean contains(int value) {
return value >= start && value < start + length;
}
// 获取这个Run的起始位置
public int getStart() {
return start;
}
// 获取这个Run的长度
public int getLength() {
return length;
}
// 获取这个Run的结束位置
public int getEnd() {
return start + length;
}
// 扩展这个Run的长度
public void extend(int len) {
this.length += len;
}
@Override
public String toString() {
return "Run [start=" + start + ", length=" + length + "]";
}
public static void main(String[] args) {
Run run = new Run(3, 8);
System.out.println("Run: " + run); // Run [start=3, length=8]
System.out.println("Contains 2? " + run.contains(2)); // false
System.out.println("Contains 5? " + run.contains(5)); // true
System.out.println("Start: " + run.getStart()); // 3
System.out.println("Length: " + run.getLength()); // 8
System.out.println("End: " + run.getEnd()); // 11
run.extend(3);
System.out.println("Extended Run: " + run); // Run [start=3, length=11]
}
}
在这个例子中,我们定义了一个Run
类,它有两个字段:start
和length
。我们也定义了一些方法来操作这个Run数据结构,例如检查一个值是否在Run范围内、获取Run的起始位置和长度等。这个例子可以给您一个基本的理解,但在实际的Roaring Bitmap实现中,Run数据结构和其他数据结构(如Array和Bitmap)会更复杂并进行优化。