- 【nnUnetv2】Code复现
是Winky啊
#项目nnUnet人工智能深度学习
作者提出一种nnUNet(no-new-Net)框架,基于原始的UNet(很小的修改),不去采用哪些新的结构,如相残差连接、dense连接、注意力机制等花里胡哨的东西。相反的,把重心放在:预处理(resampling和normalization)、训练(loss,optimizer设置、数据增广)、推理(patch-based策略、test-time-augmentations集成和模型集成等)、
- 关于误差平面小记
文弱_书生
乱七八糟平面算法神经网络机器学习
四维曲面的二维切片:误差平面详解在深度学习优化过程中,我们通常研究损失函数(LossFunction)的变化,试图找到权重的最优配置。由于神经网络的参数空间通常是高维的,我们需要使用低维可视化的方法来理解优化过程和误差平面(ErrorSurface)。在这里,我们讨论一个四维曲面的二维切片,其中:三个维度是网络的权重(w1,w2,w3w_1,w_2,w_3w1,w2,w3)。第四个维度是误差(损失
- 知识蒸馏 vs RLHF:目标函数与收敛分析
从零开始学习人工智能
人工智能
1.知识蒸馏(KnowledgeDistillation)知识蒸馏是一种模型压缩技术,旨在将大型复杂模型(教师模型)的知识迁移到较小的模型(学生模型)中,以提高学生模型的性能。目标函数知识蒸馏的目标函数通常由两部分组成:分类损失(StudentLoss):学生模型的输出与真实标签之间的交叉熵损失,表示为:[Lclassification=CrossEntropy(y,q(1))=−∑i=1Nyil
- Ubuntu 20.04使用阿里源并更新glibc到2.35版本
32.768
ubuntulinux运维
#阿里源镜像地址debhttp://mirrors.aliyun.com/ubuntu/focalmainrestricteduniversemultiversedeb-srchttp://mirrors.aliyun.com/ubuntu/focalmainrestricteduniversemultiversedebhttp://mirrors.aliyun.com/ubuntu/focal-
- LLM之Colossal-LLaMA-2:源码解读(init_tokenizer.py文件)实现基于源词表的扩展、(init_model.py文件)实现过计算均值扩展模型、(prepare_pretr
一个处女座的程序猿
CaseCodeNLP/LLMs精选(人工智能)-中级ColossalLLaMA-2自然语言处理
LLM之Colossal-LLaMA-2:源码解读(init_tokenizer.py文件)实现基于jsonl文件中读取新词列表(新中文词汇)→for循环去重实现词表的扩展(中文标记的新词汇)→保存新的分词模型、(init_model.py文件)实现过计算均值来扩展模型的嵌入层以适应新的词汇表,然后保存扩展后的模型、(prepare_pretrain_dataset.py文件)将原始数据集进行处理
- LLMs之Colossal-LLaMA-2:源码解读(train.py文件)基于给定数据集实现持续预训练LLaMA-2—解析命令行参数→初始化配置(分布式训练环境colossalai+训练日志+加速插
一个处女座的程序猿
NLP/LLMs精选(人工智能)-中级Colossal-AILLaMA-2大语言模型自然语言处理
LLMs之Colossal-LLaMA-2:源码解读(train.py文件)基于给定数据集实现持续预训练LLaMA-2—解析命令行参数→初始化配置(分布式训练环境colossalai+训练日志+加速插件)→数据预处理(初始化分词器+数据处理器+数据加载器)→模型训练(初始化模型/优化器/学习率调度器/梯度检查点/Flash-Attention/设置数据类型/是否加载预训练模型/从上一次训练点继续训
- 机器学习中的梯度下降是什么意思?
yuanpan
机器学习人工智能
梯度下降(GradientDescent)是机器学习中一种常用的优化算法,用于最小化损失函数(LossFunction)。通过迭代调整模型参数,梯度下降帮助模型逐步逼近最优解,从而提升模型的性能。1.核心思想梯度下降的核心思想是利用损失函数的梯度(即导数)来指导参数的更新方向。具体来说:梯度:梯度是损失函数对模型参数的偏导数,表示损失函数在当前参数点上的变化率。下降:通过沿着梯度的反方向(即损失函
- 模型训练和推理
一杯水果茶!
视觉与网络python梯度反向传播训练推理
训练时需要梯度,推理时不需要怎么理解“梯度”?计算图以及前向后向传播训练时需要梯度,推理时不需要阶段是否计算梯度是否反向传播是否更新参数用例写法训练✅✅✅loss训练默认即可,requires_grad=True推理❌❌❌采样、预测、部署用@torch.inference_mode()或withtorch.no_grad()训练阶段必须开启梯度计算:要计算loss(损失函数)然后通过loss.ba
- DeepSeek R1-32B医疗大模型的完整微调实战分析(全码版)
Allen_LVyingbo
医疗高效编程研发健康医疗人工智能python
DeepSeekR1-32B微调实战指南├──1.环境准备│├──1.1硬件配置││├─全参数微调:4*A10080GB││└─LoRA微调:单卡24GB│├──1.2软件依赖││├─PyTorch2.1.2+CUDA││└─Unsloth/ColossalAI│└──1.3模型加载│├─4bit量化加载│└─FlashAttention2加速├──2.数据集构建│├──2.1数据源││├─CMD
- tensorflow keras 报错 :No gradients provided for any variable 原因与解决办法
研志必有功
tensorflow报错tensorflow深度学习机器学习神经网络自然语言处理
错误分析Nogradientsprovidedforanyvariable这个意思是没有梯度给已知的所有函数,为什么会出现这个错误呢,因为在深度学习中,梯度的更新是由于反向传播算法的实现的,如果损失函数没有与已知的任何(除输入)层关联,那么,损失函数就无法求出关于各个函数的梯度,导致错误解决办法例如损失函数defcontrastive_loss_layer(left_inputs,right_in
- 新冠病毒感染人数预测(基于回归的神经网络项目)
|柳贯一|
深度学习回归神经网络数据挖掘
写在前面:我们做的事情:我们的目的是要得到一个好的模型,这个模型能够让我们预测好的y首先拿到一批数据,这批数据有x和准确的y,我们让x通过模型得到预测的y,让预测的y与准确的y去计算差距loss,根据这个差距loss去不断改变优化模型。一、神经网络项目的流程1、数据预处理:(深度学习最主要的数据处理,要先拿到数据)使用CovidDataset类加载和处理数据。根据all_feature参数选择特征
- Triplet Loss原理及 Python实现
AIGC_ZY
DiffusionModelspython深度学习机器学习
Tripletloss最初是谷歌在FaceNet:AUnifiedEmbeddingforFaceRecognitionandClustering论文中提出的,可以学到较好的人脸的embeddingTripletLoss是一种用于训练特征嵌入(featureembedding)的损失函数,广泛应用于人脸识别、图像检索等需要度量相似性的任务。其核心思想是通过学习将同类样本的嵌入距离拉近,不同类样本的
- 图像识别技术与应用课后总结(14)
一元钱面包
人工智能
训练模型加载预处理数据集:可以借助PyTorch的数据处理工具,如torch.utils和torchvision等定义损失函数:既可以自定义,也能使用PyTorch内置的,像回归任务常用nn.MSELoss(),分类任务常用nn.BCELoss()定义优化方法:PyTorch的优化方法封装在torch.optim中,基于基类optim.Optimizer,能实现自定义优化步骤。常用的优化算法如梯度
- python valueerror函数使用_python – 具有张量流的语义分段 – 损失函数中的ValueError(稀疏 – softmax)...
创新工场
pythonvalueerror函数使用
我的输入图像数据暂时是750x750x3RGB图像.在通过网络运行后,我使用shape[batch_size,750,2]的logits进行损失计算.这是一个二进制分类–我这里有两个类,[0,1]在我的标签中(形状[batch_sizex750x750].这些进入损失函数,如下:defloss(logits,labels,num_classes):withtf.name_scope('lossmi
- YOLO 中 SPFF 模块的优化与 Focal Modulation 替代研究
向哆哆
YOLOyolov8
文章目录1.YOLO中的SPPF模块分析2.FocalModulation简介3.在YOLO中用FocalModulation替换SPPF4.实验与对比分析4.1代码替换YOLO模型中的SPPF4.2训练对比5.AblationStudy(消融实验)5.1不同模块的对比实验5.2目标尺寸对比分析6.模型部署与推理优化6.1ONNX加速推理6.2适配JetsonNano7.进一步优化方向8.在YOL
- 线性回归s
三排扣
线性回归pytorch深度学习
1api的调用损失函数假设函数优化函数importtorchimporttorch.nnasnnimporttorch.optimasoptim#损失函数deftest1():#初始化损失函数对象criterion=nn.MSELoss()y_pread=torch.randn(3,5,requires_grad=True)y_test=torch.randn(3,5)#计算损失loss=crit
- ValueError: Tensor conversion requested dtype int64 for Tensor with dtype float64: ‘Tensor(“loss/a
初识-CV
机器学习kerasKL散度相对熵intTensorFlowkeras
用keras以TensorFlow作为后端重写相对熵函数,报错。。。defKL(y_true,y_pred):weights=K.sum(K.cast(K.argmax(y_true,axis=1)*K.log(K.argmax(y_true,axis=1)/K.argmax(y_pred,axis=1)),dtype='float32'))returnweights*losses.categor
- 从零到精通:小白DeepSeek全栈入门指南
好东西不迷路
各自资源AI前端htmlpython
第一部分:认知准备(1-3天)1.1基础概念搭建人工智能三要素:数据/算法/算力深度学习与传统机器学习的区别神经网络基本结构(输入层/隐藏层/输出层)常用术语解析:epoch、batch、loss、accuracy1.2环境配置实战Python环境搭建(推荐Anaconda)condacreate-ndeepseekpython=3.8condaactivatedeepseek深度学习框架选择指南
- 使用Docker一键部署Blossom笔记软件
Roc-xb
docker笔记容器
Blossom是一个需要私有部署的笔记软件,虽然本身定位是一个云端软件,但你仍然可以在本地部署,数据和图片都将保存在你的设备,不依赖任何的图床或者对象存储。客户端:支持Windows端和ARM架构的Mac端,以及作为网页端部署。移动端:响应式网页移动端,主要为移动端设计,同时也作为博客供所有人访问。服务端:服务端支持在Docker中进行部署。建议使用Docker进行部署,部署流程简单,快速,不易出
- PyTorch 常见的损失函数:从基础到大模型的应用
阿正的梦工坊
LLMPyTorchpytorch人工智能python
PyTorch常见的损失函数:从基础到大模型的应用在用PyTorch训练神经网络时,损失函数(LossFunction)是不可或缺的“裁判”。它告诉模型预测结果与真实答案的差距有多大,优化器则根据这个差距调整参数。PyTorch提供了丰富而强大的损失函数接口,位于torch.nn模块中。今天我们就来聊聊几个常见的损失函数(比如nn.MSELoss和nn.CrossEntropyLoss),看看它们
- 实现数据DLP加密鸿蒙示例代码
介绍数据防泄漏服务(DataLossPrevention,简称为DLP),是系统提供的系统级的数据防泄漏解决方案,提供文件权限管理、加密存储、授权访问等能力,数据所有者可以基于账号认证对机密文件进行权限配置,允许拥有只读、编辑、拥有者权限,随后机密文件会通过密文存储,在支持DLP机制的设备上可以通过端云协调进行认证授权,获取对数据的访问和修改的能力。本示例演示了如何创建、编辑一个dlp文件。实现数
- 实现数据DLP加密鸿蒙示例代码
介绍数据防泄漏服务(DataLossPrevention,简称为DLP),是系统提供的系统级的数据防泄漏解决方案,提供文件权限管理、加密存储、授权访问等能力,数据所有者可以基于账号认证对机密文件进行权限配置,允许拥有只读、编辑、拥有者权限,随后机密文件会通过密文存储,在支持DLP机制的设备上可以通过端云协调进行认证授权,获取对数据的访问和修改的能力。本示例演示了如何创建、编辑一个dlp文件。实现数
- 记一次pytorch训练loss异常的问题
lyyiangang
pytorch人工智能python
记一次pytorch训练loss异常的问题问题描述使用mmdetection框架训练时,某项loss出现异常大的值,比如1781232349724294.000。这个问题只在多卡训练时才会出现。解决方法在确认target和predction没有问题后,发现是在dataset中的数据处理出现了问题。在dataset中的__getitem__函数中,对数据进行了处理,但是在处理时,将数据转换为了num
- 训练神经网络出现nan
崧小果
AI学习记录神经网络深度学习机器学习
在理解和修改QARV的代码时,出现了训练会因为nan而终止的问题,因此学习记录。参考资料Pytorch训练模型损失Loss为Nan或者无穷大(INF)原因Pytorch训练模型损失Loss为Nan或者无穷大(INF)原因_pytorchnan-CSDN博客文章浏览阅读5.6w次,点赞135次,收藏489次。常见原因-1一般来说,出现NaN有以下几种情况:相信很多人都遇到过训练一个deepmodel
- 人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具
学步_技术
自动驾驶人工智能人工智能深度学习自动驾驶机器学习
人工智能深度学习系列—深度解析:交叉熵损失(Cross-EntropyLoss)在分类问题中的应用人工智能深度学习系列—深入解析:均方误差损失(MSELoss)在深度学习中的应用与实践人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具人工智能深度学习系列—探索余弦相似度损失:深度学习中的相似性度量神器人工智能深度学习系列—深度学习中的边界框回归新贵:GHM(GeneralizedH
- Tensorflow2.x框架-神经网络八股扩展-acc曲线与loss曲线
诗雨时
loss/loss可视化,可视化出准确率上升、损失函数下降的过程博主微信公众号(左)、Python+智能大数据+AI学习交流群(右):欢迎关注和加群,大家一起学习交流,共同进步!目录摘要一、acc曲线与loss曲线二、完整代码摘要loss/loss可视化,可视化出准确率上升、损失函数下降的过程一、acc曲线与loss曲线history=model.fit(训练集数据,训练集标签,batch_siz
- python oss批量上传_python 批量上传文件到阿里云oss,并写入Excel,存到本地
weixin_39624873
pythonoss批量上传
最近公司要往阿里云oss上传视频,大小差不多有200G,原先让运营去一个一个的添加,但是这能麻烦死人,所以就让技术去批量上传。所以研究了一下用python往oss上传视频首先需引用以下几个模块pipinstalloss2pipinstalltablibpipinstallpyexcel-xlsx其次因为本地的视频都是比如中文.mp4这样的,所以引入一个随机字符串importrandomdefgen
- word2vec之skip-gram算法原理
cuixuange
推荐算法word2vecskipgram
skip-gram算法原理1.input,output,targetinput的某个单词的one-hot编码(11000词汇量的总数目)output其他所有单词的概率(softmax输出也是11000)target是相近单词的one-hot形式2.Losstarget和output的矩阵的交叉熵最小or平方差最小3.NNet3.1隐层300个神经元,需要训练的权重矩阵大小是1000300本层的输出
- 【Docker项目实战】使用Docker安装Blossom 笔记应用
江湖有缘
Docker部署项目实战合集docker笔记容器
【Docker项目实战】使用Docker安装Blossom笔记应用一、Blossom介绍1.1Blossom简介1.2主要特点1.3使用场景二、本次实践规划2.1本地环境规划2.2本次实践介绍三、本地环境检查3.1检查Docker服务状态3.2检查Docker版本3.3检查dockercompose版本四、下载Blossom镜像五、部署Blossom应用5.1创建部署目录5.2编辑部署文件5.3创
- 马斯克的Grok-3:技术突破与行业冲击的深度解析
♢.*
马斯克人工智能大模型xAIGrok3
一、技术架构与核心突破超大规模算力集群Grok-3基于xAI自研的Colossus超级计算机训练完成,搭载20万块英伟达H100GPU,累计消耗2亿GPU小时,算力投入是前代Grok-2的10倍48。这一规模远超行业平均水平,例如中国团队DeepSeek-V3的算力消耗仅为Grok-3的1/2634。技术挑战:团队在122天内完成首期10万块GPU部署,克服了散热、电力供应等工程难题1。思维链推理
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象