我的Python教程:使用Pyecharts画关系节点图

示例源码1我的Python教程:使用Pyecharts画关系节点图_第1张图片

from pyecharts import options as opts
from pyecharts.charts import Graph

nodes = [
    {"name": "结点1", "symbolSize": 10},
    {"name": "结点2", "symbolSize": 20},
    {"name": "结点3", "symbolSize": 30},
    {"name": "结点4", "symbolSize": 40},
    {"name": "结点5", "symbolSize": 50},
    {"name": "结点6", "symbolSize": 40},
    {"name": "结点7", "symbolSize": 30},
    {"name": "结点8", "symbolSize": 20},
]
links = []
for i in nodes:
    for j in nodes:
        links.append({"source": i.get("name"), "target": j.get("name")})
c = (
    Graph()
    .add("", nodes, links, repulsion=8000)
    .set_global_opts(title_opts=opts.TitleOpts(title="Graph-基本示例"))
    .render("graph_base.html")
)

示例源码02我的Python教程:使用Pyecharts画关系节点图_第2张图片

import asyncio
from aiohttp import TCPConnector, ClientSession

import pyecharts.options as opts
from pyecharts.charts import Graph

async def get_json_data(url: str) -> dict:
    async with ClientSession(connector=TCPConnector(ssl=False)) as session:
        async with session.get(url=url) as response:
            return await response.json()


# 获取官方的数据
data = asyncio.run(
    get_json_data(
        url="https://echarts.apache.org/examples/data/asset/data/npmdepgraph.min10.json"
    )
)

nodes = [
    {
        "x": node["x"],
        "y": node["y"],
        "id": node["id"],
        "name": node["label"],
        "symbolSize": node["size"],
        "itemStyle": {"normal": {"color": node["color"]}},
    }
    for node in data["nodes"]
]

edges = [
    {"source": edge["sourceID"], "target": edge["targetID"]} for edge in data["edges"]
]


(
    Graph()
    .add(
        series_name="",
        nodes=nodes,
        links=edges,
        layout="none",
        is_roam=True,
        is_focusnode=True,
        label_opts=opts.LabelOpts(is_show=False),
        linestyle_opts=opts.LineStyleOpts(width=0.5, curve=0.3, opacity=0.7),
    )
    .set_global_opts(title_opts=opts.TitleOpts(title="NPM Dependencies"))
    .render("npm_dependencies.html")
)

你可能感兴趣的:(我的Python教程,python,数据可视化,pyecharts)