- TypeScript中的单例类型与区分联合
t0_54program
typescriptubuntujavascript个人开发
在编程中,我们经常会遇到一些变量或属性只能取有限的几个值的情况。例如,一个页面的方向只能是“横向”或“纵向”。那么,如何在TypeScript中限制变量只能取这些有限的值呢?这就需要用到单例类型和区分联合的概念。单例类型与区分联合在TypeScript中,单例类型是指那些只包含一个值的类型。例如,'landscape'和'portrait'都是单例类型。当我们把多个单例类型组合在一起时,就形成了区
- python | flower,一个强大的 Python 库!
双木的木
python拓展学习python库python开发语言计算机视觉人工智能算法联邦学习深度学习
本文来源公众号“python”,仅用于学术分享,侵权删,干货满满。原文链接:flower,一个强大的Python库!大家好,今天为大家分享一个强大的Python库-flower。Github地址:https://github.com/mher/flower随着机器学习模型应用的增长,联邦学习(FederatedLearning,FL)逐渐成为一个重要方向。联邦学习允许多个客户端在不共享原始数据的情
- 在vue2项目中el-table表格的表头和内容错位问题
白小水i
vue.jselementui前端
一、问题描述以及产生原因问题描述:当el-table表格有横向滚动条和纵向滚动条,把横向滚动条拉到最右边,表格的表头会和内容错位(表头和内容列不对齐)问题产生原因:在el-table有纵向滚动条时,el-table__body-wrapper+纵向滚动条的宽度是100%,故表格内容区域宽度不足100%,而表头el-table__header-wrapper的宽度仍为100%,表格内容实际宽度小于表
- 智能算法安全优化与关键技术实践
智能计算研究中心
其他
内容概要智能算法的安全优化与关键技术实践已成为人工智能发展的核心命题。在医疗影像分析、金融风控、自动驾驶等场景中,联邦学习的分布式协作机制有效解决了数据孤岛问题,而生成对抗网络通过对抗训练增强数据生成能力,为小样本场景提供技术支撑。与此同时,可解释性算法通过特征重要性分析与决策路径可视化,显著提升模型透明度,降低黑箱风险。在技术实现层面,特征工程的自动化筛选与超参数动态调整策略优化了模型性能,结合
- 跨领域算法安全优化与实践路径
智能计算研究中心
其他
内容概要在算法技术加速渗透金融、医疗、自动驾驶等关键领域的背景下,跨领域算法的安全性与可落地性成为核心挑战。本书从联邦学习的隐私保护架构切入,探讨如何通过可解释性算法增强模型透明度,并引入量子计算与边缘计算的协同优化框架,构建兼顾效率与安全的技术范式。值得注意的是,医疗影像分析中的对抗攻击防御机制与生成对抗网络驱动的推荐系统创新,揭示了算法动态演进中的风险控制逻辑。技术整合不应局限于单一场景优化,
- 第37篇Personalized Federated Learning: A Meta-Learning Approach(perfedavg联邦学习+元学习)2020个性化联邦学习使用Hessian
还不秃顶的计科生
联邦学习学习
第一部分:解决的问题联邦学习(FL)在多用户协同训练模型时,因数据隐私和通信限制,用户仅与中央服务器交互。传统FL方法得到的全局模型无法适应各用户的异质数据,导致在用户本地数据集上性能不佳因此这篇论文旨在解决联邦学习中模型缺乏个性化的问题第二部分:idea基于模型无关元学习(MAML)框架,提出个性化联邦学习问题的新公式。通过寻找一个初始共享模型,让用户基于自身数据执行少量梯度下降步骤就能快速适应
- Java生成LRC纵向冗余校验
YunFeiDong
Javajava开发语言ModbusASCII
纵向冗余校验(LongitudinalRedundancyCheck,简称:LRC)是通信中常用的一种校验形式,也称LRC校验或纵向校验;它是一种从纵向通道上的特定比特串产生校验比特的错误检测方法;通常Modbus协议ASCII模式采用LRC算法。1.生成LRC校验/***生成LRC校验值:**1)对需要校验的数据(2n个字符)两两组成一个16进制的数值求和;*2)将求和结果与256求模;*3)用
- Android组件化、模块化、插件化
写完就会了
JAVA基础Androidandroid
Android组件化、模块化、插件化区别详解-掘金组件化:组件化就是基于可重用为目的的,将一个大的软件系统按照分离关注点的形式,拆分多个独立的组件,减少耦合。就是“基础库”或者“基础组件",意思是把代码重复的部分提炼出一个个组件供给功能使用使用:Dialog,各种自定义的UI控件、能在项目或者不同项目重复应用的代码等等目的:复用,解耦依赖:组件之间低依赖,比较独立架构定位:纵向分层(位于架构底层,
- 按键精灵找图的原理及影响找图效率的因素
学自动化的小白
计算机视觉图像处理人工智能
按键精灵找图的原理主要是基于图像识别算法,具体涉及像素点的颜色值和位置比对。以下是对该原理的详细解释:一、图像像素点的基本概念图像是由一个个颜色块组成的,这些颜色块非常小,通常看不出有明显的分块界限。这些带有颜色的小方块就是图像的像素点。像素点是在一个二维平面上排列的,分为横向和纵向,大量的像素点排列在一起就组成了一张图像。二、找图原理的具体步骤确定找图区域:按键精灵在屏幕上指定的区域内进行找图操
- AI人工智能 Agent:在保护隐私和数据安全中的应用
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能Agent:在保护隐私和数据安全中的应用关键词:AIAgent、隐私保护、数据安全、同态加密、联邦学习、区块链1.背景介绍1.1问题的由来随着人工智能技术的快速发展,AIAgent在各行各业得到了广泛应用。然而,在享受AI带来便利的同时,人们也越来越关注个人隐私和数据安全问题。传统的数据收集和处理方式存在隐私泄露风险,亟需探索如何在AI时代更好地保护用户隐私。1.2研究现状目前,学术界
- HarmonyOS Next 跨端适配的电商购物应用开发
harmonyos
商品展示的不同模式(网格布局vs列表布局)在电商应用中,商品展示模式主要有网格布局和列表布局两种。网格布局以矩阵形式排列商品,能在有限空间内展示较多商品,适合快速浏览和比较商品。列表布局则是将商品依次纵向排列,每个商品信息展示更详细,注重商品详情的呈现。小屏单列vs大屏多列的适配策略小屏设备(如手机)屏幕空间有限,为保证商品信息清晰展示和操作便捷,商品列表通常采用单列布局。用户可以通过上下滑动轻松
- day23 第七章 回溯算法part02
mvufi
算法
组合问题:同一个集合,startindex允许重复元素startindex从i开始不允许重复元素,startindex从i+1开始不同集合,index(可以用for,不用用回溯)for循环,横向遍历,控制组合不重复;递归,for内部,纵向便利,控制组合内元素如何构成。剪枝从元素个数和元素和入手,元素和用排序+剪枝,都是在for的结束上做文章39.组合总和如果是一个集合来求组合的话,就需要start
- 【八股】非关系型数据库篇(Redis+ES)
林子漾
八股项目redis数据库缓存
关系型和非关系型数据库特性关系型数据库(RDBMS)非关系型数据库(NoSQL)数据模型表格(行和列)文档、键值、列族、图等多样化模型模式固定(Schema)灵活的,无需预定义结构扩展性纵向扩展为主,横向扩展困难横向扩展容易,适合大规模分布式系统事务支持完全支持ACID事务多数不支持或仅支持单一操作的事务查询语言SQL各种API或NoSQL特定的查询语言数据一致性强一致性最终一致性或可调的一致性级
- 人工智能算法安全优化实践路径
智能计算研究中心
其他
内容概要在人工智能技术深度融入产业实践的进程中,算法安全优化已成为保障系统可靠性与社会信任的核心命题。本文系统性梳理从数据预处理到模型落地的全流程安全实践路径,聚焦金融风控、医疗影像诊断、自动驾驶等关键场景,揭示算法开发中潜藏的伦理风险与技术挑战。通过整合自动化机器学习与联邦学习技术,构建跨数据孤岛的协作框架,同时引入可解释性算法增强模型透明度,确保决策逻辑可追溯、可验证。在模型优化维度,重点解析
- 金融风控与医疗影像算法创新前沿
智能计算研究中心
其他
内容概要在金融风控与医疗影像交叉领域,算法创新正推动两大行业的技术范式变革。联邦学习算法通过分布式数据协作机制,在保证隐私安全的前提下,显著提升金融风险预测模型的泛化能力。医疗影像诊断领域则依托三维卷积神经网络(3D-CNN)架构,实现了对CT、MRI等多模态影像的精准病灶分割,诊断准确率较传统方法提升23.6%。值得关注的是,可解释性算法(如LIME和SHAP)的深度应用,使两类场景中的模型决策
- 每日Attention学习24——Strip Convolution Block
xiongxyowo
划水
模块出处[TIP21][link]CoANet:ConnectivityAttentionNetworkforRoadExtractionFromSatelliteImagery模块名称StripConvolutionBlock(SCB)模块作用多方向条形特征提取模块结构模块特点类PSP设计,采用四个并行分支提取不同维度的信息相比于经典的横向/纵向条形卷积,引入了两种斜方向的卷积来更好的学习斜向线
- C++:继承
学习使我变快乐
c++开发语言
上篇帖子我们讲了类之间的横向关系,本帖将讲述纵向关系:继承。说到继承儿子,我们可以联想到儿子继承父亲的遗产,在编程中我们可以理解为一个类获得另一个类的成员变量和成员函数的过程。被继承的类叫作父类或基类,继承的类称为子类或派生类。子类除了可以继承父类的成员,还可以定义新的成员。应用场景:1.当你要创建多个类,他们拥有部分相似的成员,则可以将相似部分提取出来作为父类,然后各个子类继承父类,可以减少代码
- 云原生降本之路:技术创新与应用解析
ITPUB-微风
云原生
随着云计算的快速发展,云原生技术已成为企业降低成本、提高效率的重要手段。本文基于腾讯云容器技术专家孟凡杰的PPT内容,深入探讨了云原生技术在降低企业成本方面的应用,包括资源利用现状、成本优化思路、Kubernetes中的资源分配、横向与纵向伸缩、Kubernetes原生能力的不足、全链路降本的思考与价值主张、多种集群形态的利用、资源运营策略、Crane智能调度系统的应用、FinOps理念在腾讯内部
- 联邦学习与边缘模型优化赋能医疗诊断新路径
智能计算研究中心
其他
内容概要在医疗诊断智能化进程中,数据隐私保护与模型效能提升的双重需求催生出技术创新范式。联邦学习框架通过分布式模型训练机制,有效破解医疗机构间的数据壁垒,使跨机构的医学影像、病理数据在不离开本地服务器的前提下完成知识共享。与此同时,边缘计算节点部署将模型推理能力延伸至诊疗终端,CT影像实时分析响应时间缩短62%,显著提升急诊场景下的决策效率。建议医疗机构在部署联邦学习系统时,优先采用差分隐私与同态
- 联邦学习优化驱动医疗诊断新突破
智能计算研究中心
其他
内容概要医疗人工智能的发展长期面临数据孤岛与隐私合规的双重挑战,传统集中式训练模式难以满足多机构协作需求。联邦学习技术通过构建分布式训练框架,使医疗机构在不共享原始数据的前提下,实现跨域模型的协同优化。这一技术突破为医学影像识别、病理特征分析等场景提供了新的技术路径,特别是在肿瘤筛查领域,通过迁移学习实现跨病种知识迁移,配合超参数自动调优机制,可使模型在有限标注数据下达到95%以上的病灶识别准确率
- 2025保险与金融领域实战全解析:DeepSeek赋能细分领域深度指南(附全流程案例)
emmm形成中
deepseek细分领域应用人工智能金融人工智能python数据挖掘数据分析
2025保险与金融领域实战全解析:DeepSeek赋能细分领域深度指南(附全流程案例)目录DeepSeek在保险与金融中的核心价值保险领域:从风险建模到产品创新金融领域:从投资分析到财富管理区块链与联邦学习的应用探索客户关系与私域运营:全球化体验升级工具与资源推荐:从入门到精通未来趋势与挑战一、DeepSeek在保险与金融中的核心价值1.1DeepSeek的核心功能智能风险建模:通过大数据分析,精
- (10054, ‘远程主机强迫关闭了一个现有的连接。‘, None, 10054, None)(联邦学习+ray中常见问题)
还不秃顶的计科生
快捷操作编程技巧服务器前端运维
第一部分:问题描述(pid=24828)Filesalreadydownloadedandverified2025-02-2412:48:44,183ERRORimport_thread.py:89--ImportThread:Errorwhilereadingfromsocket:(10054,'远程主机强迫关闭了一个现有的连接。',None,10054,None)2025-02-2412:48
- 边缘计算与联邦学习驱动医疗影像特征工程优化
智能计算研究中心
其他
内容概要随着医疗影像数据规模的指数级增长与多模态成像技术的普及,传统集中式特征工程方法面临数据孤岛、隐私泄露及计算效率等多重挑战。本研究针对医疗影像分析场景中跨机构数据共享的复杂性,提出基于边缘计算与联邦学习的协同优化框架,通过分布式特征工程重构医学图像的解析范式。该框架以卷积神经网络为核心,结合多阶段数据预处理流程(包括噪声抑制、模态对齐及标准化处理),实现跨设备医疗影像的特征表示统一化。在模型
- 深度学习框架与边缘计算融合驱动医疗金融模型优化新路径
智能计算研究中心
其他
内容概要随着边缘计算与深度学习框架的深度融合,医疗与金融领域的模型优化正在突破传统算力与隐私保护的瓶颈。当前,TensorFlow、PyTorch等主流框架通过轻量化改造(如TensorFlowLite与PyTorchMobile)逐步适应边缘设备的资源限制,同时结合联邦学习技术构建分布式训练网络。这种技术协同不仅降低了医疗影像诊断中的数据传输延迟,还通过动态模型压缩策略(如量化与剪枝)将金融预测
- 边缘计算与联邦学习驱动医疗金融预测及模型可解释性技术突破
智能计算研究中心
其他
内容概要当前人工智能技术正经历多维度融合与迭代升级,边缘计算与联邦学习的协同创新成为突破性方向。通过将计算资源下沉至终端设备,边缘计算有效缓解了传统中心化架构的延迟与带宽压力,而联邦学习则在保障数据隐私的前提下,实现了跨机构模型的分布式训练。这种技术组合在医疗诊断与金融预测领域展现出显著优势,例如通过部署轻量化模型实现实时病理分析,或构建跨银行风险预测系统,同时满足监管合规需求。在模型优化层面,自
- 联邦学习: 统一数据协作和隐私保护的技术解决之道
小牍
大数据分布式数据安全
联邦学习:统一数据协作和隐私保护的技术解决之道1.数据价值和隐私2.隐私计算技术安全多方计算可信执行环境联邦学习3.联邦学习的拓展分布式机器学习联邦学习和传统分布式系统的差异联邦学习带来的挑战安全性补充实际案例讲解总结1.数据价值和隐私为什么需要隐私计算呢?数据的产生过程是分散的,数据具有天然的割裂性。不同类型的公司提供不同的业务和服务,产生的数据类型也是不同的,例如社交公司产生用户大量的社交数据
- Kate文本编辑器 v24.12.9013 开源高级文本代码编辑器
SSASASA11
编辑器
链接:https://pan.quark.cn/s/5577e74ab648Kate是一个可以跨平台使用的免费高级文本编辑器,支持标签页、代码高亮、显示行号、显示缩略图的滚动条、多文件查找、横向或者纵向显示多个视图等众多高级特性。软件功能1、双击当前标签页创建新标签页。2、支持启用/禁用自动换行。3、强大的多文件查找和替换功能。利用这个功能可以一键查找/替换所有已打开的文本中的内容。支持正则表达式
- 第26篇:pFedLoRA: Model-Heterogeneous Personalized Federated Learning with LoRA使用lora微调的模型异构个性化联邦学习
还不秃顶的计科生
联邦学习深度学习人工智能开发语言
第一部分:解决的问题联邦学习(FederatedLearning,FL)是一种分布式机器学习方法,允许客户端在本地数据上训练模型,同时通过中心服务器共享学习成果。传统FL框架假设客户端使用相同的模型结构(模型同构),但在实际中可能面对:统计异质性:客户端的数据分布不均(non-IID)。资源异质性:客户端硬件资源有限。模型异质性:客户端可能拥有不同的模型结构。模型异构的个性化联邦学习(MHPFL)
- 2024年Python最新联邦学习实战-2-用FATE从零实现横向逻辑回归,面试阿里巴巴客服
2401_84138785
程序员python逻辑回归面试
学好Python不论是就业还是做副业赚钱都不错,但要学会Python还是要有一个学习规划。最后大家分享一份全套的Python学习资料,给那些想学习Python的小伙伴们一点帮助!一、Python所有方向的学习路线Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。二、学习软件工欲善其
- EMC Symmetrix V-Max:革命者?集大成者?
weixin_34067980
前端后端运维ViewUI
横向,还是纵向?两个月前,EMC公司存储部门总裁唐纳特利(DavidA.Donatelli)访华的时候,笔者问了这样一个问题:中高端存储市场上,已经出现了以IBMXIV和3PARInServT系列为代表的横向扩展(scaleout)系统,而SymmetrixDMX-4仍属于纵向扩展(scale-up)系统,(不可分割的)单一系统能支持的驱动器数量多达2400个。传说中的DMX-5,还会向这个方向发
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin