- 大语言模型微调和大语言模型应用区别
AI Echoes
深度学习人工智能自然语言处理
大语言模型微调和大语言模型应用区别微调与应用LLM的区别微调大语言模型(LLM)是指取一个已经预训练好的模型,进一步用特定数据集训练,使其更好地适应某个任务或领域,比如为医疗聊天机器人优化医疗术语理解。应用LLM则是直接使用这些预训练模型来完成任务,如通过提示生成文本或回答问题,无需更改模型本身。研究表明,微调适合需要领域专精的任务,而应用更适合通用任务,效果因模型和任务复杂性而异。学习所需技术栈
- [学习笔记] Windows编程——GDI——(六)设备上下文
根本没在怕哦
Windows编程学习笔记windows
前言:学习笔记,随时更新。如有谬误,欢迎指正。说明:红色字体为较为重要部分。绿色字体为个人理解部分。原文链接:https://learn.microsoft.com/en-us/windows/win32/gdi/device-contexts6设备上下文设备上下文是一种结构,用于定义一组图形对象及其关联属性,以及影响输出的图形模式。图形对象包括用于线条绘制的笔、用于绘制和填充的画刷、用于复制或滚
- [学习笔记] Windows编程——GDI——(三)裁剪
根本没在怕哦
Windows编程学习笔记windows
前言:学习笔记,随时更新。如有谬误,欢迎指正。说明:红色字体为较为重要部分。绿色字体为个人理解部分。原文链接:https://learn.microsoft.com/en-us/windows/win32/gdi/clipping3裁剪剪裁是将输出限制为应用程序窗口的工作区中的某个区域或路径的过程。3.1关于裁剪应用程序通过多种方式使用剪裁。Word和Excel应用程序剪裁键盘输入,使其不显示在页
- Manus(一种AI代理或自动化工具)与DeepSeek(一种强大的语言模型或AI能力)结合使用任务自动化和智能决策
zzlyx99
人工智能自动化语言模型
一、Manus与DeepSeek差异十分好奇DeepSeek和Manus究竟谁更厉害些,DeepSeek是知识型大脑,Manus则是全能型执行者。即DeepSeek专注于语言处理、知识整合与专业文本生成。其核心优势在于海量参数支持的深度学习和知识推理能力,例如撰写论文、润色法律合同、解答专业问题等。Manus则更强调从规划到交付的闭环能力。它通过工具链调用(如浏览器、代码编辑器)自主执行复杂任务,
- 强化学习:时间差分(TD)(SARSA算法和Q-Learning算法)(看不懂算我输专栏)——手把手教你入门强化学习(六)
wxchyy
强化学习算法
目录前言前期回顾一、SARSA算法二、Q-Learning算法三、总结总结前言 前两期我们介绍了动态规划算法,还有蒙特卡洛算法,不过它们对于状态价值函数的估值都有其缺陷性,像动态规划,需要从最下面向上进行递推,而蒙特克洛则需要一个Episode(回合)结束才能对其进行估值,有没有更直接的方法,智能体能边做动作,边估值一次,不断学习策略?答案是有的。这就是本期需要介绍的算法,时间差分法(TimeDi
- 金融类APP-手写签名ADD盖章功能实现
CherryChen88
金融金融类App专栏金融app手写签名手写签名加盖公章android
前言:之前换工作的时候,发现从事金融行业APP开发比较赚钱,为了钱,最近一直在学习,换工作之前在银行工作,虽然也算是金融行业但是却没有证券行业等的收益高,但在银行业务开发中金融行业也能够使用的其中之一就是,手写签名+公章功能的实现。原理:从业务逻辑上来说,就是我们提供一个可绘制的面板,让用户可以绘制,绘制完成后,进行写入文件保存或者加盖公章合成图片,然后上传后台,这里图片压缩处理逻辑省略。绘制面板
- 深度学习处理时间序列(2)
yyc_audio
深度学习笔记深度学习人工智能
在数据中寻找周期性在多个时间尺度上的周期性,是时间序列数据非常重要且常见的属性。无论是天气、商场停车位使用率、网站流量、杂货店销售额,还是健身追踪器记录的步数,你都会看到每日周期性和年度周期性(人类生成的数据通常还有每周的周期性)。探索数据时,一定要注意寻找这些模式。(让人想到波,想到傅里叶变换)对于这个数据集,如果你想根据前几个月的数据来预测下个月的平均温度,那么问题很简单,因为数据具有可靠的年
- 机器学习的下一个前沿是因果推理吗?——探索机器学习的未来方向!
真智AI
人工智能机器学习
机器学习的进化:从预测到因果推理机器学习凭借强大的预测能力,已经彻底改变了多个行业。然而,要实现真正的突破,机器学习还需要克服实践和计算上的挑战,特别是在因果推理方面的应用。未来,因果推理或许将成为推动机器学习发展的新前沿。什么是因果推理,它如何与机器学习相关?如果你和我一样没有数学背景,你可能会好奇“因果推理”到底意味着什么?它与机器学习又有什么关系?当我刚开始学习机器学习时,第一次听到“因果推
- 深度好文 图解 RocketMQ 的系统架构
橘野禾
系统架构kafkajava分布式后端
今天给大家分享一篇学习RocketMQ系统架构核心知识点的梳理和总结,在讲解时力求精简、通俗易懂,通过图解来给正在学习RocketMQ的小伙伴带来帮助。RocketMQ是阿里巴巴的分布式消息中间件,在2012年开源,在2017年成为Apache顶级项目。1集群架构RocketMQ的集群架构如下图:从上图可以看到,整个集群中有四个角色:NameServer集群、Broker主从集群、Producer
- AI编程篇-python基础篇
cv工程师(ctrl+c\v)
AI编程python
转型AI算法后的总结-python基础篇python基础AI算法工程师的日常开发工作离不开python这门语言。python的优点:开源免费、简单易学、丰富的库。以下是我总结的python的一些基础:1.python及IDE工具安装对于初学者来说,python的安装是必不可少的,但是为了方便代码编辑和查看结果及debug,可以安装pycharm社区版暂时用来前期学习:python安装及注意事项:下
- DeepSeek+元脑企智大模型一体机(培训交流)
互联网之路.
deepseek
互联网各领域资料分享专区(不定期更新):Sheet获取方式:请用手机点击链接进行保存,会自动赠送1TB内存,若链接生效请及时后台留言,谢谢。链接如下(夸克网盘):夸克网盘分享免责声明:1)所共享的所有内容均来源于网络共享资源,版权归原作者或企业所有,下载的任何资源仅能用于学习和研究目的,请勿用于商业用途,否则后果自负。2)尊重版权,这些资源仅供个人学习和交流使用,请勿用于商业用途。本文档仅做整理。
- C/C++框架和库推荐
大王算法
C++入门及项目实战宝典C/C++开发实战365C++
值得学习的C语言开源项目-1.WebbenchWebbench是一个在Linux下使用的非常简单的网站压测工具。它使用fork()模拟多个客户端同时访问我们设定的URL,测试网站在压力下工作的性能,最多可以模拟3万个并发连接去测试网站的负载能力。Webbench使用C语言编写,代码实在太简洁,源码加起来不到600行。下载链接:http://home.tiscali.cz/~cz210552/web
- ## VMware 虚拟机保姆级教程:从零开始玩转虚拟化
一只联想小新15呀~
运维开发
虚拟化技术已经成为现代计算不可或缺的一部分,而VMware作为虚拟化领域的领导者,其产品VMwareWorkstationPlayer和VMwareWorkstationPro更是深受广大用户喜爱。无论你是想体验不同操作系统,还是搭建测试环境,VMware都能满足你的需求。本教程将带你从零开始,一步步学习如何使用VMware虚拟机。**一、准备工作**1.**下载VMwareWorkstation
- 《黑客攻防从入门到精通:工具篇》全15章万字深度总结——从工具解析到实战攻防,构建完整网络安全知识体系
予安灵
黑客技术web安全安全系统安全网络安全安全架构网络攻击模型黑客工具链
目录一、书籍核心逻辑与学习路径二、核心模块与工具深度解析模块1:信息收集与网络扫描模块2:渗透测试与漏洞利用模块3:密码攻防与身份认证模块4:恶意程序攻防模块5:网络追踪与反追踪模块6:系统加固与数据防护三、工具链实战方法论第一章:黑客必备小工具第二章:扫描与嗅探工具第三章:注入工具(诸如工具)第四章:密码攻防工具第五章:病毒攻防常用工具第六章:木马攻防常用工具第七章:网游与网吧攻防工具第八章:黑
- Java 基础到进阶&企业技巧(二)
Aphelios380
开发语言java学习idea学习方法
在Java学习的旅程中,我们逐步探索了其丰富的知识体系,从基础的数据类型、字符串操作,到流程控制、运算符的运用,每一步都为我们构建强大的编程能力奠定基石。同时,了解这些知识在Java全栈开发中的应用场景,对未来进入企业工作至关重要。目录一、字符串1.底层原理与语法2.字符串位置与拼接3.字符串数组操作二、人机交互1.接收输入-Scanner类2.课堂练习三、字符与编码1.char字符2.面试题:字
- Java Spring Framework:高级进阶与刨根问底
墨瑾轩
一起学学Java【一】javaspring开发语言
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣引言:在Java的世界里,SpringFramework就像是一位超级英雄,默默地守护着无数开发者的心。今天,我们将踏上一场探索之旅,一起揭开SpringFramework的神秘面纱吧!刨根问底:什么是SpringFramework?你知道吗?SpringFr
- 智慧运维与物联网技术在地铁车辆段的应用项目
罗博深
本文还有配套的精品资源,点击获取简介:随着物联网技术的广泛应用,智慧运维系统通过传感器、大数据分析、云计算等技术集成,提升了地铁车辆段的运维效率和安全性。该系统可以实时监控设备状态、预测故障、提供智能决策支持、优化维护策略,并降低运营成本,同时提高乘客安全。其应用拓展至整个地铁线路,乃至与城市交通系统协同,展现了智慧运维对公共交通系统现代化的贡献。1.物联网技术基础与应用物联网(Interneto
- Java多线程与并发编程实战——从基础到进阶
AI天才研究院
Python实战Java实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介互联网企业都在大力拓展自己的业务,而新的技术革命也带来了海量的数据量,因此,单机并发处理能力已经无法满足现代信息时代对高速数据的需求。大数据和云计算带来的分布式系统架构,让单台计算机不仅能够执行单个任务,而且可以横向扩展处理大量任务。在这种情况下,如何充分利用多核CPU、共享内存等资源并发地处理多项任务就成为现代系统设计者们必备技能之一。本书将以实操为导向,全面
- kaggle-ISIC 2024 - 使用 3D-TBP 检测皮肤癌-学习笔记
supernova121
学习笔记
问题描述:通过从3D全身照片(TBP)中裁剪出单个病变来识别经组织学确诊的皮肤癌病例数据集描述:图像+临床文本信息评价指标:pAUC,用于保证敏感性高于指定阈值下的AUC主流方法分析(文本)基于CatBoost、LGBM和XGBoost三者的组合,为每个算法创建了XX个变体,总共XX个模型,进行集成学习。CatBoost在传统梯度提升决策树(GBDT)基础上,引入了一系列关键技术创新,以提升处理类
- 机器视觉|手势识别:基于YOLOv5的手部检测与MediaPipe的关键点估计
RockLiu@805
机器视觉YOLO
手势识别:基于YOLOv5的手部检测与MediaPipe的关键点估计在实时计算机视觉应用中,手部检测与关键点估计是实现手势识别的重要基础。本文将介绍一种基于深度学习的手势识别技术方案,通过结合YOLOv5物体检测网络和MediaPipe关键点检测框架,实现实时的手部定位与关键点提取。技术背景gesturerecognition作为计算机视觉领域的重要研究方向,在HCI(人机交互)、遥控行为分析、虚
- 深入解析LTE-A到5G的系统消息架构与功能演进
罗博深
本文还有配套的精品资源,点击获取简介:系统消息是移动通信网络中,UE与网络间信息交换的核心,涵盖了网络状态、服务信息与系统配置。文章深入分析了4GLTE-A到5G网络中系统消息的组成、作用及其演进,包括MIB和SIBs的功能与内容,以及5G对系统消息的优化和新技术的引入,如动态调度、网络切片和针对物联网设备的特定参数配置。5G系统消息还通过机器学习和大数据分析实现智能化分发,增强了网络灵活性、智能
- ARM N2微架构介绍
「已注销」
CPU微架构verilog
简介之前在“ARMV2处理器微架构介绍”一文中介绍了面向服务器、云计算等应用的ARMV2处理器微架构,V系列具有更强性能,N系列强调性能和功耗等方向的平衡,本文就将介绍一下ARMN2处理器微架构相比较前代的一些提升。尽管ARM还具备一代N1/V1的服务器端处理器,但严格意义讲N2是ARM相对成熟的第一代服务器端处理器IP。前端Front-End前端的设计相比较前代可以说是巨大提升,预测和取指依然是
- 7.探索XSS跨站脚本攻击
早安TnT
网络安全学习计划(每日计划)xss前端网络安全学习
探索XSS跨站脚本攻击第一部分:XSS基础(理论)第二部分:XSS的手工测试(理论)第三部分:DVWA靶场实践XSS(实践)总结目标:•理解XSS的基本原理与类型•掌握XSS的手工测试方法•通过DVWA靶场实践XSS攻击详细内容与教学第一部分:XSS基础(理论)学习内容:•什么是XSS?•XSS的类型•XSS的危害详细讲解:1什么是XSS?XSS(Cross-SiteScripting,跨站脚本攻
- Android Framework学习——安卓进程启动流程(Android 13)
Big Popsicle
android学习
提示:本文仅作个人学习记录,禁止转载本文参考:袁神的文章,理解Android进程创建流程文章目录1,前言2,简略步骤3,代码走读3.1,提要,从系统启动末尾开始3.2,system_server发起请求3.3,Zygote创建进程3.4,新进程的运行总结1,前言进程是作为应用程序容器存在的,每个应用启动前需要先创建一个进程,进程是由Zygote进程孵化来的,它拥有独立的资源空间,用来运行四大组件,
- 解决约束多目标优化问题的新方法:MOEA/D-DAE算法深度解析
木子算法
多目标优化人工智能算法多目标人工智能
解决约束多目标优化问题的新方法:MOEA/D-DAE算法深度解析在工程优化、机器学习等众多领域,约束多目标优化问题(CMOPs)广泛存在。传统方法在处理这类问题时,常因可行区域不连通或约束违反局部极小点陷入停滞。近期,IEEETransactionsonEvolutionaryComputation上的一篇论文提出了一种新颖的解决方案——MOEA/D-DAE算法,通过结合检测-逃逸策略(DAE)和
- 基于深度学习的个性化新闻推荐系统设计与实现计算机毕设
sj52abcd
深度学习课程设计人工智能毕业设计
博主介绍:✌专注于VUE,小程序,安卓,Java,python,物联网专业,有17年开发经验,长年从事毕业指导,项目实战✌选取一个适合的毕业设计题目很重要。✌关注✌私信我✌具体的问题,我会尽力帮助你。研究的背景:随着互联网技术的发展和普及,人们越来越依赖互联网获取信息。然而,随着信息量的不断增加,用户在查找新闻时面临着信息过载的问题。为了解决这个问题,个性化新闻推荐系统被广泛应用。个性化新闻推荐系
- 用Python提取json数据到Excel文件中
程序媛了了
pythonjsonexcel
本文介绍基于Python,读取JSON文件数据,并将JSON文件中指定的键值对数据转换为.csv格式文件的方法。在之前的文章疯狂学习GIS:Python读取JSON数据并存储为CSV表格中,我们就介绍过将JSON文件数据保存到.csv格式或.xlsx格式的表格文件中的方法;而本文我们将针对不同的待提取数据特征,给出另一种方法。首先,我们来明确一下具体的需求。我们现有一个JSON文件数据,是一个包含
- python 人工智能实战案例
2401_86114612
pygamepythonjava
大家好,今天我们要分享,python编程人工智能小例子python人工智能100例子,一起探索吧!1.背景介绍概述在这个世纪,人类已经处于数字化的时代,而这也让很多其他行业都进入了数字化领域python列表有哪些基本操作,python列表功能很重要吗。其中包括游戏行业。游戏行业的蓬勃发展促使机器学习的产生,通过计算机能够进行高效率地模拟人类的学习、决策过程,不断升级提升人类的能力。游戏领域中的AI
- Autoleaders控制组——51单片机学习笔记(2)
Autoleaders控制组 邓翔
51单片机学习笔记
51单片机学习(2)1.模块化编程1.1模块化编程的意义在学习单片机的途中,随着我们的知识不断扩展,我们能写出的代码也越来越复杂,越来越长了,有时我们自己写出的很长的代码,出现了错误,需要调试,但奈何自己的代码实在是太长了,真的不好分析到底是哪里出错了。这是因为我们将太多的函数和代码放在一个main.c的文件里,导致代码过度堆积。如果我们能够条理清晰地去将不同作用的代码和函数放在不同的xxx.c文
- Python 在人工智能领域的实际6大案例
Solomon_肖哥弹架构
人工智能机器学习python
Python作为一种功能强大且易于学习的编程语言,在人工智能(AI)领域得到了广泛的应用。从机器学习到深度学习,从自然语言处理到计算机视觉,Python提供了丰富的库和框架,使得开发者能够快速实现各种AI应用。本文将通过多个实际案例,展示Python在人工智能领域的强大功能和应用前景。二、案例一:手写数字识别(MNIST)1.背景介绍手写数字识别是机器学习领域的经典入门项目,MNIST数据集包含了
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号