代码随想录算法训练营第二天 | 977.有序数组的平方 ,209.长度最小的子数组 ,59.螺旋矩阵II

代码随想录算法训练营第二天 | 977.有序数组的平方 ,209.长度最小的子数组 ,59.螺旋矩阵II

  • 977.有序数组的平方
    • :computer:暴力排序
    • :computer:双指针法
    • :eyes:题目总结:eyes:
  • 209.长度最小的子数组
    • :computer:暴力解法
    • :computer:滑动窗口
    • :eyes:题目总结:eyes:
  • 59.螺旋矩阵II
    • :eyes:题目总结:eyes:
  • :balloon:心得收获

977.有序数组的平方

题目链接
视频讲解
给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按非递减顺序排序

输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]

暴力排序

class Solution {
public:
    vector<int> sortedSquares(vector<int>& A) {
        for (int i = 0; i < A.size(); i++) {
            A[i] *= A[i];
        }
        sort(A.begin(), A.end()); // 快速排序
        return A;
    }
};

这个时间复杂度是 O(n + nlogn), 可以说是O(nlogn)的时间复杂度

双指针法

数组是有序的, 只不过负数平方之后有可能成为最大数,那么数组平方的最大值就在数组的两端,不是最左边就是最右边,不可能是中间。
此时可以考虑双指针法了,i指向起始位置,j指向终止位置。
代码随想录算法训练营第二天 | 977.有序数组的平方 ,209.长度最小的子数组 ,59.螺旋矩阵II_第1张图片

class Solution {
public:
    vector<int> sortedSquares(vector<int>& A) {
        int k = A.size() - 1;
        vector<int> result(A.size(), 0);
        for (int i = 0, j = A.size() - 1; i <= j;) { // 注意这里要i <= j,因为最后要处理两个元素
            if (A[i] * A[i] < A[j] * A[j])  {
                result[k--] = A[j] * A[j];
                j--;
            }
            else {
                result[k--] = A[i] * A[i];
                i++;
            }
        }
        return result;
    }
};

此时的时间复杂度为O(n)

题目总结

当一个题有多种解法时,不同解法的时间复杂度可能不同

209.长度最小的子数组

题目链接
视频讲解
给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0

输入:target = 7, nums = [2,3,1,2,4,3]
输出:2

暴力解法

两个for循环,然后不断的寻找符合条件的子序列

  • 时间复杂度:O(n^2)
  • 空间复杂度:O(1)
class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int result = INT32_MAX; // 最终的结果
        int sum = 0; // 子序列的数值之和
        int subLength = 0; // 子序列的长度
        for (int i = 0; i < nums.size(); i++) { // 设置子序列起点为i
            sum = 0;
            for (int j = i; j < nums.size(); j++) { // 设置子序列终止位置为j
                sum += nums[j];
                if (sum >= s) { // 一旦发现子序列和超过了s,更新result
                    subLength = j - i + 1; // 取子序列的长度
                    result = result < subLength ? result : subLength;
                    break; // 因为我们是找符合条件最短的子序列,所以一旦符合条件就break
                }
            }
        }
        // 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
        return result == INT32_MAX ? 0 : result;
    }
};

滑动窗口

滑动窗口,就是不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果,首先要思考如果用一个for循环,那么应该表示滑动窗口的起始位置,还是终止位置,只用一个for循环,那么这个循环的索引,一定是表示 滑动窗口的终止位置
代码随想录算法训练营第二天 | 977.有序数组的平方 ,209.长度最小的子数组 ,59.螺旋矩阵II_第2张图片
最后找到 4,3 是最短距离。
其实从动画中可以发现滑动窗口也可以理解为双指针法的一种!只不过这种解法更像是一个窗口的移动,所以叫做滑动窗口更适合一些。

注意三点:

  1. 窗口内是什么?
  2. 如何移动窗口的起始位置?
  3. 如何移动窗口的结束位置?

窗口就是 满足其和 ≥ s 的长度最小的连续子数组
窗口的起始位置如何移动:如果当前窗口的值大于s了,窗口就要向前移动了(也就是该缩小了)
窗口的结束位置如何移动:窗口的结束位置就是遍历数组的指针,也就是for循环里的索引

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int result = INT32_MAX;
        int sum = 0; // 滑动窗口数值之和
        int i = 0; // 滑动窗口起始位置
        int subLength = 0; // 滑动窗口的长度
        for (int j = 0; j < nums.size(); j++) {
            sum += nums[j];
            // 注意这里使用while,每次更新 i(起始位置),并不断比较子序列是否符合条件
            while (sum >= s) {
                subLength = (j - i + 1); // 取子序列的长度
                result = result < subLength ? result : subLength;
                sum -= nums[i++]; // 这里体现出滑动窗口的精髓之处,不断变更i(子序列的起始位置)
            }
        }
        // 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
        return result == INT32_MAX ? 0 : result;
    }
};

不要以为for里放一个while就以为是O(n^2)啊, 主要是看每一个元素被操作的次数,每个元素在滑动窗后进来操作一次,出去操作一次,每个元素都是被操作两次,所以时间复杂度是 2 × n 也就是O(n)

题目总结

滑动窗口的精妙之处在于根据当前子序列和大小的情况,不断调节子序列的起始位置,从而将O(n^2)暴力解法降为O(n)

59.螺旋矩阵II

题目链接
视频讲解
给定一个正整数 n,生成一个包含 1 到 n^2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵

代码随想录算法训练营第二天 | 977.有序数组的平方 ,209.长度最小的子数组 ,59.螺旋矩阵II_第3张图片

输入:n = 3
输出:[[1,2,3],[8,9,4],[7,6,5]]

不涉及到什么算法,就是模拟过程,而求解本题依然是要坚持循环不变量原则

模拟顺时针画矩阵的过程:

  1. 填充上行从左到右
  2. 填充右列从上到下
  3. 填充下行从右到左
  4. 填充左列从下到上

这里一圈下来,我们要画每四条边,这四条边怎么画,每画一条边都要坚持一致的左闭右开,或者左开右闭的原则,这样这一圈才能按照统一的规则画下来
代码随想录算法训练营第二天 | 977.有序数组的平方 ,209.长度最小的子数组 ,59.螺旋矩阵II_第4张图片

class Solution {
public:
    vector<vector<int>> generateMatrix(int n) {
        vector<vector<int>> res(n, vector<int>(n, 0)); // 使用vector定义一个二维数组
        int startx = 0, starty = 0; // 定义每循环一个圈的起始位置
        int loop = n / 2; // 每个圈循环几次,例如n为奇数3,那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理
        int mid = n / 2; // 矩阵中间的位置,例如:n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2)
        int count = 1; // 用来给矩阵中每一个空格赋值
        int offset = 1; // 需要控制每一条边遍历的长度,每次循环右边界收缩一位
        int i,j;
        while (loop --) {
            i = startx;
            j = starty;

            // 下面开始的四个for就是模拟转了一圈
            // 模拟填充上行从左到右(左闭右开)
            for (j = starty; j < n - offset; j++) {
                res[startx][j] = count++;
            }
            // 模拟填充右列从上到下(左闭右开)
            for (i = startx; i < n - offset; i++) {
                res[i][j] = count++;
            }
            // 模拟填充下行从右到左(左闭右开)
            for (; j > starty; j--) {
                res[i][j] = count++;
            }
            // 模拟填充左列从下到上(左闭右开)
            for (; i > startx; i--) {
                res[i][j] = count++;
            }

            // 第二圈开始的时候,起始位置要各自加1, 例如:第一圈起始位置是(0, 0),第二圈起始位置是(1, 1)
            startx++;
            starty++;

            // offset 控制每一圈里每一条边遍历的长度
            offset += 1;
        }

        // 如果n为奇数的话,需要单独给矩阵最中间的位置赋值
        if (n % 2) {
            res[mid][mid] = count;
        }
        return res;
    }
};

题目总结

一定要坚持循环不变量原则!

心得收获

从二分法到双指针,从滑动窗口到螺旋矩阵,更深入掌握了基本题型以及基本思想

你可能感兴趣的:(算法,矩阵,数据结构)