题目链接
视频讲解
给你一个整数数组 nums 和一个整数 k ,按以下方法修改该数组:
选择某个下标 i 并将 nums[i] 替换为 -nums[i]
重复这个过程恰好 k 次。可以多次选择同一个下标 i
以这种方式修改数组后,返回数组 可能的最大和
输入:nums = [3,-1,0,2], k = 3
输出:6
贪心的思路,局部最优:让绝对值大的负数变为正数,当前数值达到最大,整体最优:整个数组和达到最大,局部最优可以推出全局最优,那么如果将负数都转变为正数了,K依然大于0,此时的问题是一个有序正整数序列,如何转变K次正负,让 数组和 达到最大,那么又是一个贪心:局部最优:只找数值最小的正整数进行反转,当前数值和可以达到最大(例如正整数数组{5, 3, 1},反转1 得到-1 比 反转5得到的-5 大多了),全局最优:整个 数组和 达到最大,这么一道简单题,就用了两次贪心!
那么本题的解题步骤为:
第一步:将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小
第二步:从前向后遍历,遇到负数将其变为正数,同时K–
第三步:如果K还大于0,那么反复转变数值最小的元素,将K用完
第四步:求和
class Solution {
static bool cmp(int a, int b) {
return abs(a) > abs(b);
}
public:
int largestSumAfterKNegations(vector<int>& A, int K) {
sort(A.begin(), A.end(), cmp); // 第一步
for (int i = 0; i < A.size(); i++) { // 第二步
if (A[i] < 0 && K > 0) {
A[i] *= -1;
K--;
}
}
if (K % 2 == 1) A[A.size() - 1] *= -1; // 第三步
int result = 0;
for (int a : A) result += a; // 第四步
return result;
}
};
如果没有贪心的思考方式(局部最优,全局最优),很容易陷入贪心简单题凭感觉做,贪心难题直接不会做,其实这样就锻炼不了贪心的思考方式了
题目链接
视频讲解
在一条环路上有 n 个加油站,其中第 i 个加油站有汽油 gas[i] 升,你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空,给定两个整数数组 gas 和 cost ,如果你可以按顺序绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1,如果存在解,则 保证 它是 唯一 的
输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2]
输出: 3
暴力的方法很明显就是O(n^2)的,遍历每一个加油站为起点的情况,模拟一圈,如果跑了一圈,中途没有断油,而且最后油量大于等于0,说明这个起点是ok的,暴力的方法思路比较简单,但代码写起来也不是很容易,关键是要模拟跑一圈的过程,for循环适合模拟从头到尾的遍历,而while循环适合模拟环形遍历,要善于使用while!
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
for (int i = 0; i < cost.size(); i++) {
int rest = gas[i] - cost[i]; // 记录剩余油量
int index = (i + 1) % cost.size();
while (rest > 0 && index != i) { // 模拟以i为起点行驶一圈(如果有rest==0,那么答案就不唯一了)
rest += gas[index] - cost[index];
index = (index + 1) % cost.size();
}
// 如果以i为起点跑一圈,剩余油量>=0,返回该起始位置
if (rest >= 0 && index == i) return i;
}
return -1;
}
};
直接从全局进行贪心选择,情况如下:
情况一:如果gas的总和小于cost总和,那么无论从哪里出发,一定是跑不了一圈的
情况二:rest[i] = gas[i]-cost[i]为一天剩下的油,i从0开始计算累加到最后一站,如果累加没有出现负数,说明从0出发,油就没有断过,那么0就是起点
情况三:如果累加的最小值是负数,汽车就要从非0节点出发,从后向前,看哪个节点能把这个负数填平,能把这个负数填平的节点就是出发节点
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
int curSum = 0;
int min = INT_MAX; // 从起点出发,油箱里的油量最小值
for (int i = 0; i < gas.size(); i++) {
int rest = gas[i] - cost[i];
curSum += rest;
if (curSum < min) {
min = curSum;
}
}
if (curSum < 0) return -1; // 情况1
if (min >= 0) return 0; // 情况2
// 情况3
for (int i = gas.size() - 1; i >= 0; i--) {
int rest = gas[i] - cost[i];
min += rest;
if (min >= 0) {
return i;
}
}
return -1;
}
};
首先如果总油量减去总消耗大于等于零那么一定可以跑完一圈,说明 各个站点的加油站 剩油量rest[i]相加一定是大于等于零的,每个加油站的剩余量rest[i]为gas[i] - cost[i],i从0开始累加rest[i],和记为curSum,一旦curSum小于零,说明[0, i]区间都不能作为起始位置,因为这个区间选择任何一个位置作为起点,到i这里都会断油,那么起始位置从i+1算起,再从0计算curSum
那么为什么一旦[0,i] 区间和为负数,起始位置就可以是i+1呢,i+1后面就不会出现更大的负数?如果出现更大的负数,就是更新i,那么起始位置又变成新的i+1了,那有没有可能 [0,i] 区间 选某一个作为起点,累加到 i这里 curSum是不会小于零呢? 如图:
如果 curSum<0 说明 区间和1 + 区间和2 < 0, 那么 假设从上图中的位置开始计数curSum不会小于0的话,就是 区间和2>0,区间和1 + 区间和2 < 0 同时 区间和2>0,只能说明区间和1 < 0, 那么就会从假设的箭头初就开始从新选择其实位置了,那么局部最优:当前累加rest[i]的和curSum一旦小于0,起始位置至少要是i+1,因为从i之前开始一定不行。全局最优:找到可以跑一圈的起始位置
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
int curSum = 0;
int totalSum = 0;
int start = 0;
for (int i = 0; i < gas.size(); i++) {
curSum += gas[i] - cost[i];
totalSum += gas[i] - cost[i];
if (curSum < 0) { // 当前累加rest[i]和 curSum一旦小于0
start = i + 1; // 起始位置更新为i+1
curSum = 0; // curSum从0开始
}
}
if (totalSum < 0) return -1; // 说明怎么走都不可能跑一圈了
return start;
}
};
对于第一种贪心方法,就是一种直接从全局选取最优的模拟操作,对于第二种贪心方法,用局部最优可以推出全局最优,进而求得起始位置
题目链接
视频讲解
n 个孩子站成一排。给你一个整数数组 ratings 表示每个孩子的评分,你需要按照以下要求,给这些孩子分发糖果:
每个孩子至少分配到 1 个糖果
相邻两个孩子评分更高的孩子会获得更多的糖果
请你给每个孩子分发糖果,计算并返回需要准备的最少糖果数目
输入:ratings = [1,2,2]
输出:4
这道题目一定是要确定一边之后,再确定另一边,例如比较每一个孩子的左边,然后再比较右边,如果两边一起考虑一定会顾此失彼,先确定右边评分大于左边的情况(也就是从前向后遍历),此时局部最优:只要右边评分比左边大,右边的孩子就多一个糖果,全局最优:相邻的孩子中,评分高的右孩子获得比左边孩子更多的糖果,局部最优可以推出全局最优,如果ratings[i] > ratings[i - 1] 那么[i]的糖 一定要比[i - 1]的糖多一个,所以贪心:candyVec[i] = candyVec[i - 1] + 1
再确定左孩子大于右孩子的情况(从后向前遍历),遍历顺序这里有同学可能会有疑问,为什么不能从前向后遍历呢?因为 rating[5]与rating[4]的比较 要利用上 rating[5]与rating[6]的比较结果,所以 要从后向前遍历,如果从前向后遍历,rating[5]与rating[4]的比较 就不能用上 rating[5]与rating[6]的比较结果了,如图:
所以确定左孩子大于右孩子的情况一定要从后向前遍历!如果 ratings[i] > ratings[i + 1],此时candyVec[i](第i个小孩的糖果数量)就有两个选择了,一个是candyVec[i + 1] + 1(从右边这个加1得到的糖果数量),一个是candyVec[i](之前比较右孩子大于左孩子得到的糖果数量),那么又要贪心了,局部最优:取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,保证第i个小孩的糖果数量既大于左边的也大于右边的。全局最优:相邻的孩子中,评分高的孩子获得更多的糖果,局部最优可以推出全局最优,所以就取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,candyVec[i]只有取最大的才能既保持对左边candyVec[i - 1]的糖果多,也比右边candyVec[i + 1]的糖果多
如图:
class Solution {
public:
int candy(vector<int>& ratings) {
vector<int> candyVec(ratings.size(), 1);
// 从前向后
for (int i = 1; i < ratings.size(); i++) {
if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1;
}
// 从后向前
for (int i = ratings.size() - 2; i >= 0; i--) {
if (ratings[i] > ratings[i + 1] ) {
candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1);
}
}
// 统计结果
int result = 0;
for (int i = 0; i < candyVec.size(); i++) result += candyVec[i];
return result;
}
};
这在leetcode上是一道困难的题目,其难点就在于贪心的策略,如果在考虑局部的时候想两边兼顾,就会顾此失彼
那么本题我采用了两次贪心的策略:
一次是从左到右遍历,只比较右边孩子评分比左边大的情况
一次是从右到左遍历,只比较左边孩子评分比右边大的情况
这样从局部最优推出了全局最优,即:相邻的孩子中,评分高的孩子获得更多的糖果