pyspark RDD reduce、reduceByKey、reduceByKeyLocally用法

一、reduce

Reduces the elements of this RDD using the specified commutative and associative binary operator. Currently reduces partitions locally.

a=sc.parallelize([1,2,3,4,5],2).reduce(add)
print(a)

a=sc.parallelize((2 for _ in range(10))).map(lambda x:1).cache().reduce(add)
print(a)

二、reduceByKey(func, numPartitions=None, partitionFunc=)
Merge the values for each key using an associative and commutative reduce function.

This will also perform the merging locally on each mapper before sending results to a reducer, similarly to a “combiner” in MapReduce.

Output will be partitioned with numPartitions partitions, or the default parallelism level if numPartitions is not specified. Default partitioner is hash-partition.
按照k值操作V值,返回k-v列表

def add1(a, b):

    print("*"*55)
    print(a)
    print(b)
    return a + b+100

rdd=sc.parallelize([('a',1),('b',100),('a',300),('b',3),('a',200)])

a=sorted(rdd.reduceByKey(add1).collect())
print(a)

pyspark RDD reduce、reduceByKey、reduceByKeyLocally用法_第1张图片

三、reduceByKeyLocally(func)
Merge the values for each key using an associative and commutative reduce function, but return the results immediately to the master as a dictionary.
同reduceByKey,但是返回一个字典

def add1(a, b):

    print("*"*55)
    print(a)
    print(b)
    return a + b


rdd=sc.parallelize([('a',1),('b',100),('a',300),('b',3),('a',200)])
a=rdd.reduceByKeyLocally(add1)
print("%"*33)
print(a)
print(type(a))

print(a.items())
print(sorted(a.items()))

pyspark RDD reduce、reduceByKey、reduceByKeyLocally用法_第2张图片

你可能感兴趣的:(pyspark)