因果推断(四)断点回归(RD)

因果推断(四)断点回归(RD)

在传统的因果推断方法中,有一种方法可以控制观察到的混杂因素和未观察到的混杂因素,这就是断点回归,因为它只需要观察干预两侧的数据,是否存在明显的断点。

⚠️注意:当然这个方法只能做到局部随机,因此很难依据该结论推向全局。

本文参考自rdd官方示例,通过python的rdd包展示如何进行断点回归分析。

准备数据

# pip install rdd
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from rdd import rdd
# 设置随机种子
np.random.seed(42)

# 构造数据
N = 10000
x = np.random.normal(1, 1, N)
epsilon = np.random.normal(0, 1, N)
threshold = 1
treatment = np.where(x >= threshold, 1, 0)
w1 = np.random.normal(0, 1, N) # 控制变量1
w2 = np.random.normal(0, 4, N) # 控制变量2
y = .5 * treatment + 2 * x - .2 * w1 + 1 + epsilon

data = pd.DataFrame({'y':y, 'x': x, 'w1':w1, 'w2':w2})
data.head()
y x w1 w2
0 3.745276 1.496714 0.348286 -7.922288
1 2.361307 0.861736 0.283324 -4.219943
2 4.385300 1.647689 -0.936520 -2.348114
3 6.540561 2.523030 0.579584 0.598676
4 4.026888 0.765847 -1.490083 4.096649

模型拟合

# 设置带宽,只观察断点附近的数据表现
bandwidth_opt = rdd.optimal_bandwidth(data['y'], data['x'], cut=threshold)
print("Optimal bandwidth:", bandwidth_opt)
# 筛选带宽内数据
data_rdd = rdd.truncated_data(data, 'x', bandwidth_opt, cut=threshold)
Optimal bandwidth: 0.7448859965965812

结果展示

# 查看效果
plt.figure(figsize=(12, 8))
plt.scatter(data_rdd['x'], data_rdd['y'], facecolors='none', edgecolors='r')
plt.xlabel('x')
plt.ylabel('y')
plt.axvline(x=threshold, color='b')
plt.show()
plt.close()

因果推断(四)断点回归(RD)_第1张图片

# 数据混杂较多的噪音,对数据进行分箱,减少噪音
data_binned = rdd.bin_data(data_rdd, 'y', 'x', 100)

plt.figure(figsize=(12, 8))
plt.scatter(data_binned['x'], data_binned['y'],
    s = data_binned['n_obs'], facecolors='none', edgecolors='r')
plt.axvline(x=threshold, color='b')
plt.xlabel('x')
plt.ylabel('y')
plt.show()
plt.close()
    

因果推断(四)断点回归(RD)_第2张图片

模型评估

# 查看模型效果
print('\n','{:*^80}'.format('model summary:'),'\n')
model = rdd.rdd(data_rdd, 'x', 'y', cut=threshold)
print(model.fit().summary())

# 手动增加协变量,更改协方差类型
print('\n','{:*^80}'.format('model summary customize 1:'),'\n')
model = rdd.rdd(data_rdd, 'x', 'y', cut=threshold, controls=['w1', 'w2'])
print(model.fit(cov_type='hc1').summary())

# 手动设置拟合方程
print('\n','{:*^80}'.format('model summary customize 2:'),'\n')
model = rdd.rdd(data_rdd, 'x', cut=threshold, equation='y ~ TREATED + x + w1*w2')
print(model.fit().summary())
 *********************************model summary:********************************* 

Estimation Equation:	 y ~ TREATED + x
                            WLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.508
Model:                            WLS   Adj. R-squared:                  0.508
Method:                 Least Squares   F-statistic:                     2811.
Date:                Sun, 02 Oct 2022   Prob (F-statistic):               0.00
Time:                        00:53:56   Log-Likelihood:                -7794.0
No. Observations:                5442   AIC:                         1.559e+04
Df Residuals:                    5439   BIC:                         1.561e+04
Df Model:                           2                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept      1.0297      0.046     22.267      0.000       0.939       1.120
TREATED        0.4629      0.054      8.636      0.000       0.358       0.568
x              1.9944      0.065     30.776      0.000       1.867       2.121
==============================================================================
Omnibus:                        2.452   Durbin-Watson:                   2.036
Prob(Omnibus):                  0.293   Jarque-Bera (JB):                2.429
Skew:                          -0.034   Prob(JB):                        0.297
Kurtosis:                       3.077   Cond. No.                         10.3
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

 ***************************model summary customize 1:*************************** 

Estimation Equation:	 y ~ TREATED + x + w1 + w2
                            WLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.523
Model:                            WLS   Adj. R-squared:                  0.523
Method:                 Least Squares   F-statistic:                     1520.
Date:                Sun, 02 Oct 2022   Prob (F-statistic):               0.00
Time:                        00:53:56   Log-Likelihood:                -7709.9
No. Observations:                5442   AIC:                         1.543e+04
Df Residuals:                    5437   BIC:                         1.546e+04
Df Model:                           4                                         
Covariance Type:                  hc1                                         
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept      1.0297      0.045     22.797      0.000       0.941       1.118
TREATED        0.4783      0.054      8.870      0.000       0.373       0.584
x              1.9835      0.064     30.800      0.000       1.857       2.110
w1            -0.1748      0.014    -12.848      0.000      -0.201      -0.148
w2             0.0081      0.003      2.372      0.018       0.001       0.015
==============================================================================
Omnibus:                        2.687   Durbin-Watson:                   2.031
Prob(Omnibus):                  0.261   Jarque-Bera (JB):                2.692
Skew:                          -0.032   Prob(JB):                        0.260
Kurtosis:                       3.088   Cond. No.                         26.3
==============================================================================

Notes:
[1] Standard Errors are heteroscedasticity robust (HC1)

 ***************************model summary customize 2:*************************** 

Estimation Equation:	 y ~ TREATED + x + w1*w2
                            WLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.523
Model:                            WLS   Adj. R-squared:                  0.523
Method:                 Least Squares   F-statistic:                     1194.
Date:                Sun, 02 Oct 2022   Prob (F-statistic):               0.00
Time:                        00:53:56   Log-Likelihood:                -7709.6
No. Observations:                5442   AIC:                         1.543e+04
Df Residuals:                    5436   BIC:                         1.547e+04
Df Model:                           5                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept      1.0303      0.046     22.617      0.000       0.941       1.120
TREATED        0.4784      0.053      9.054      0.000       0.375       0.582
x              1.9828      0.064     31.054      0.000       1.858       2.108
w1            -0.1746      0.014    -12.831      0.000      -0.201      -0.148
w2             0.0080      0.003      2.362      0.018       0.001       0.015
w1:w2         -0.0025      0.003     -0.737      0.461      -0.009       0.004
==============================================================================
Omnibus:                        2.725   Durbin-Watson:                   2.031
Prob(Omnibus):                  0.256   Jarque-Bera (JB):                2.732
Skew:                          -0.033   Prob(JB):                        0.255
Kurtosis:                       3.088   Cond. No.                         26.9
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

上述模型表明TREATED有显著影响

模型验证

# 模型验证
data_placebo = rdd.truncated_data(data, 'x', yname='y', cut=0) # 任意位置设置断点
# 查看验证效果
model = rdd.rdd(data_placebo, 'x', 'y', cut=0, controls=['w1'])
print(model.fit().summary())
Estimation Equation:	 y ~ TREATED + x + w1
                            WLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.375
Model:                            WLS   Adj. R-squared:                  0.374
Method:                 Least Squares   F-statistic:                     660.8
Date:                Sun, 02 Oct 2022   Prob (F-statistic):               0.00
Time:                        00:53:56   Log-Likelihood:                -4633.4
No. Observations:                3310   AIC:                             9275.
Df Residuals:                    3306   BIC:                             9299.
Df Model:                           3                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept      1.0154      0.039     26.118      0.000       0.939       1.092
TREATED        0.0294      0.068      0.433      0.665      -0.104       0.163
x              1.9780      0.087     22.631      0.000       1.807       2.149
w1            -0.1752      0.017    -10.245      0.000      -0.209      -0.142
==============================================================================
Omnibus:                        3.151   Durbin-Watson:                   2.006
Prob(Omnibus):                  0.207   Jarque-Bera (JB):                3.114
Skew:                           0.057   Prob(JB):                        0.211
Kurtosis:                       3.098   Cond. No.                         8.15
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

随机设置断点在位置0,TREATED影响不显著符合预期

总结

RDD能很好的针对政策干预、营销活动的影响效果进行因果推断。例如某平台粉丝数达到10w会呈现大【V】标,我们就可以利用断点回归查看小于10万附近的用户收益和高于10万用户附近的用户收益,是否存在明显的断点。

共勉~

你可能感兴趣的:(数据分析,python,数据分析)